Phylogenetic Tree 16S rRNA Gene of Acinetobacter soli Isolated from the Prepuce of Aceh Cattle
DOI:
https://doi.org/10.3889/oamjms.2022.10312Keywords:
Acinetobacter soli, 16S rRNA, Gene, Phylogenetic tree, Prepuce, CattleAbstract
BACKGROUND: In the pre-seed area of healthy Aceh cattle, it is possible to be contaminated with pathogenic bacteria that can interfere with the reproductive system. This study is needed to identify these pathogenic bacteria using a molecular approach, in an effort to prevent infection.
AIM: The aim of the present study was to construct phylogenetic tree relationships of Acinetobacter soli identified in the preputial area of Aceh cattle by molecular analysis using 16S rRNA gene sequencing.
MATERIALS AND METHODS: A total of 75 preputial specimens were obtained from Indrapuri’s Breeding and Forages Center of Aceh Cattles, Indrapuri district, Banda Aceh, Indonesia. The samples were processed for culture using standard conventional methods. The extraction of genomic DNA and the amplification of the 16S rRNA gene were assayed using polymerase chain reaction. A phylogenetic tree was constructed using distance matrices using the neighbor-joining model of the molecular evolutionary genetic analysis software 6.1 software.
RESULTS: The results showed that of 75 preputial swab samples, 18 (24%) were positive for A. soli isolates. There was a 100% sequence similarity to A. soli prototype strain B1 and a 99% similarity to Acinetobacter parvus prototype strain LUH4616, Acinetobacter baylyi strain B2, A. venetianus strain ATCC 31012, as well as a 99% similarity to Acinetobacter baumannii strain DSM 30007, the strain ATCC 19606, and the strain JCM 6841, respectively. We concluded that A. soli-positive presentation in the preparation of Aceh cattle has 100% sequence similarity of 16S rRNA with A. soli strain B1.
CONCLUSIONS: The conclusion of this study is that, based on the construction of a phylogenetic tree, it shows that 24% of the bacterial isolate is related to A. soli. It is essential to conduct a regular survey for bacterial contamination and to increase worker awareness and education about hygiene standards.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Pellegrino FL, Vieira VV, Baio PV, Dos Santos RM, Dos Santos AL, De Barros Santos NG, et al. Acinetobacter soli as a cause of bloodstream infection in a neonatal intensive care unit. J Clin Microbiol. 2011;49(6):2283-5. https://doi.org/10.1128/JCM.00326-11 PMid:21525230 DOI: https://doi.org/10.1128/JCM.00326-11
Endo S, Yano H, Kanamori H, Inomata S, Aoyagi T, Hatta M, et al. High frequency of Acinetobacter soli among Acinetobacter isolates causing bacteremia at a tertiary hospital in Japan. J Clin Microbiol. 2014;52(3):911-5. https://doi.org/10.1128/JCM.03009-13 PMid:24403303 DOI: https://doi.org/10.1128/JCM.03009-13
Kitanaka H, Sasano MA, Yokoyama S, Suzuki M, Jin W, Inayoshi M, et al. Invasive infection caused by carbapenem-resistant Acinetobacter soli, Japan. Emerg Infect Dis. 2014;20(9):1574-6. https://doi.org/10.3201/eid2009.140117 PMid:25151987 DOI: https://doi.org/10.3201/eid2009.140117
Askari N, Momtaz H, Tajbakhsh E. Acinetobacter baumannii in sheep, goat, and camel raw meat: Virulence and antibiotic resistance pattern. AIMS Microbiol. 2019;5(3):272-84. https://doi.org/10.3934/microbiol.2019.3.272 PMid:31663061 DOI: https://doi.org/10.3934/microbiol.2019.3.272
Askari N, Momtaz H, Tajbakhsh E. Prevalence and phenotypic pattern of antibiotic resistance of Acinetobacter baumannii isolated from different types of raw meat samples in Isfahan, Iran. Vet Med Sci. 2020;6(1):147-53. https://doi.org/10.1002/vms3.199 PMid:31576672 DOI: https://doi.org/10.1002/vms3.199
Lupo A, Vogt D, Seiffert SN, Endimiani A, Perreten V. Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland. J Food Prot. 2014;77(11):1976-81. https://doi.org/10.4315/0362-028X.JFP-14-073 PMid:25364933 DOI: https://doi.org/10.4315/0362-028X.JFP-14-073
Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in oromia regional state, Ethiopia. PLoS One. 2012;7(12):e52377. https://doi.org/10.1371/journal.pone.0052377 PMid:23285015 DOI: https://doi.org/10.1371/journal.pone.0052377
Quiñones D, Carvajal I, Perez Y, Hart M, Perez J, Garcia S, et al. High prevalence of bla OXA-23 in Acinetobacter spp. and detection of bla NDM-1 in A. soli in Cuba: report from national surveillance program (2010-2012). New Microbes New Infect. 2015;7:52-6. https://doi.org/10.1016/j.nmni.2015.06.002 PMid:26236494 DOI: https://doi.org/10.1016/j.nmni.2015.06.002
Lauderdale TL, Hsu MC, Mu JJ, Chang FY, Lai JF, Tan MC, et al. NDM-1-producing Acinetobacter soli from Taiwan. Diagn Microbiol Infect Dis. 2014;80(2):168-9. https://doi.org/10.1016/j.diagmicrobio.2014.06.008 PMid:25059771 DOI: https://doi.org/10.1016/j.diagmicrobio.2014.06.008
Chen Y, Yan Z, Wang M, Zheng X, Lu Y, Lin S. Draft genome sequence of a multidrug-resistant bla NDM-1-producing Acinetobacter soli isolate in China. Indian J Microbiol. 2014;54(4):474-5. https://doi.org/10.1007/s12088-014-0469-5 PMid:25320449 DOI: https://doi.org/10.1007/s12088-014-0469-5
Meena GS, Raina VS, Gupta AK, Mohanty TK, Bhakat M, Abdullah M, et al. Effect of preputial washing on bacterial load and preservability of semen in Murrah buffalo bulls. Vet World. 2015;8(6):798-803. https://doi.org/10.14202/vetworld.2015.798-803 PMid:27065650 DOI: https://doi.org/10.14202/vetworld.2015.798-803
Rahmi Y, Darmawi D, Abrar M, Jamin F, Fakhrurrazi F, Fahrimal Y. Identification of Staphylococcus aureus in preputium and vagina of horses (Equus caballus). J Med Vet. 2015;9(2):154-8. https://doi.org/10.21157/j.med.vet.v9i2.3805 DOI: https://doi.org/10.21157/j.med.vet..v9i2.3805
Balqis U, Hambal M, Admi M, Meutia N, Abdullah AA, Ferasyi TR, et al. Escherichia fergusonii identified in preputial swabs from healthy Aceh cattle by phylogenetic 16S rRNA analysis. Malays J Microbiol. 2018;14(3):229-35. https://mjm.usm.my/uploads/issues/1407 DOI: https://doi.org/10.21161/mjm.107417
Hambal M, Admi M, Safika S, Sari WE, Ferasyi TR, Dasrul D, et al. Identification of Staphylococcus species isolated from preputium of Aceh cattle based on 16S rRNA gene sequences analysis. Vet World. 2019;12(10):1540-5. https://doi.org/10.14202/vetworld.2019.1540-1545 PMid:31849414 DOI: https://doi.org/10.14202/vetworld.2019.1540-1545
Sari WN, Safika S, Darmawi D, Fahrimal Y. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle. Vet World. 2017;10(12):1515-20. https://doi.org/10.14202/vetworld.2017.1515-1520 PMid:29391695 DOI: https://doi.org/10.14202/vetworld.2017.1515-1520
Safika S, Sari WN, Darmawi D, Fahrimal Y, Santosa SF. Isolation and identification of a cellulolytic Bacillus from rumen of Aceh’s cattle. Asian J Microbiol Biotech Environ Sci. 2018;20(3):798-804.
Barus T, Wati L, Suwanto A. Diversity of protease-producing Bacillus spp. from fresh Indonesian tempeh based on 16S rRNA gene sequence. HAYATI J Biosci. 2017;24(1):35-40. https://doi.org/10.1016/j.hjb.2017.05.001 DOI: https://doi.org/10.1016/j.hjb.2017.05.001
Sherzada S, Qazi MA, Wajid A, Iqbal S, Atique U, Bibi R, et al. Molecular analysis of Staphylococcus aureus isolated from infected dairy goats. Thai J Vet Med. 2019;49(4):361-7.
El-Ghareeb WR, Abdel-Raheem SM, Al-Marri TM, Alaql FA, Fayez MM. Isolation and identification of extended spectrum β-lactamases (ESBLs) Escherichia coli from minced camel meat in Eastern province, Saudi Arabia. Thai J Vet Med. 2020;50(2):155-61.
Ting CH, Lin CY, Chung CW, Shen PC, Chang CD, Wu HY. Prevalence of Salmonella spp. and Escherichia coli in dogs with diarrhoea in Western Taiwan. Thai J Vet Med. 2020;50(2):227-32.
Weerakhun S, Sukon P, Hatai K. Mycobacterium marinum and Mycobacterium fortuitum infections in siamese fighting fish, Betta splendens (Regan), in Thailand. Thai J Vet Med. 2019;49(2):137-45.
Castro CE, Knezetic JA, Cavalieri SJ. Use of 16S rRNA gene sequencing to identify a case of Pediococcus parvulus bacteremia in a patient with metastatic testicular cancer. Lab Med. 2010;41(2):93-5. https://doi.org/10.1309/LMP8FHP6M2NNVPFH DOI: https://doi.org/10.1309/LMP8FHP6M2NNVPFH
Mitra S, Roy P. Molecular identification by 16 S rDNA sequence of a novel bacterium capable of degrading trichloroethylene. J Biol Sci. 2010;10(7):637-42. https://doi.org/10.3923/jbs.2010.637.642 DOI: https://doi.org/10.3923/jbs.2010.637.642
Sujatha P, Kumar BN, Kalarani V. Isolation, characterization and molecular identification of bacteria from tannery effluent using 16S rRNA sequencing. Curr Biot. 2012;6(2):198-207.
Ntushelo K. Identifying bacteria and studying bacterial diversity using the 16S ribosomal RNA gene-based sequencing techniques: A review. Afr J Microbiol Res. 2013;7(49):5533-40. https://doi.org/10.5897/AJMR2013.5966 DOI: https://doi.org/10.5897/AJMR2013.5966
Puteri GC, Ridwan R, Harlia E. Ecological diversity of microbial consortium feces of beef cattle and lignite coal. HAYATI J Biosci. 2020;27(3):180. https://doi.org/10.4308/hjb.27.3.180 DOI: https://doi.org/10.4308/hjb.27.3.180
Da Silva GA, Monteiro FO, Dias HL, De O Cavalcante R, Da F Sampaio AI, Da Conceição M, et al. Qualitative analysis of preputial and vaginal bacterial microbiota in owl monkeys (Aotus azarai infulatus) raised in captivity. J Med Primatol. 2013;42(2):71-8. https://doi.org/10.1111/jmp.12029 PMid:23278502 DOI: https://doi.org/10.1111/jmp.12029
Chai WT, Gansau JA, Atong M, Kadir J, Poili E, Chong KP. First report of Erwinia psidii associated with papaya dieback disease in Malaysia. Malays J Microbiol. 2017;13(1):20-5. https://doi.org/10.21161/mjm.89816 DOI: https://doi.org/10.21161/mjm.89816
Bakar NA, Rahman MH, Shakri NA. Identification and characterization of lactic acid bacteria isolated from fruit tree rhizosphere in MARDI, Malaysia. Malays J Microbiol. 2017;13(1):61-6.
Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55(3):541-55. https://doi.org/10.1016/j.mimet.2003.08.009 PMid:14607398 DOI: https://doi.org/10.1016/j.mimet.2003.08.009
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9. https://doi.org/10.1093/molbev/msr121 PMid:21546353 DOI: https://doi.org/10.1093/molbev/msr121
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-26. https://doi.org/10.1093/oxfordjournals.molbev.a0400 PMid:8336541
Rafei R, Hamze M, Pailhoriès H, Eveillard M, Marsollier L, Joly- Guillou ML, et al. Extrahuman epidemiology of Acinetobacter baumannii in Lebanon. Appl Environ Microbiol. 2015;81(7):2359-67. https://doi.org/10.1128/AEM.03824-14 PMid:25616788 DOI: https://doi.org/10.1128/AEM.03824-14
Choi JY, Kim Y, Ko EA, Park YK, Jheong WH, Ko G, et al. Acinetobacter species isolates from a range of environments: Species survey and observations of antimicrobial resistance. Diagn Microbiol Infect Dis. 2012;74(2):177-80. https://doi.org/10.1016/j.diagmicrobio.2012.06.023 PMid:22902160 DOI: https://doi.org/10.1016/j.diagmicrobio.2012.06.023
Kim D, Baik KS, Kim MS, Park SC, Kim SS, Rhee MS, et al. Acinetobacter soli sp. nov., isolated from forest soil. J Microbiol. 2008;46(4):396-401. https://doi.org/10.1007/s12275-008-0118-y PMid:18758729 DOI: https://doi.org/10.1007/s12275-008-0118-y
Joshi K, Sharma NS, Jand SK, Oberoi MS. Prevalence of Campylobacter fetus in cattle and buffalo breeding bulls in Northern India. Indian J Anim Sci. 2006;76(8):609-11.Open Access Maced J Med Sci. 2022 Aug 28; 10(A):1487-1491. 1491
Downloads
Published
How to Cite
License
Copyright (c) 2022 Masda Admi, Darmawi Darmawi, Teuku Reza Ferasyi, Dasrul Dasrul (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0