Neuroprotective Agents: A Simple Overview

Authors

  • Ageng Sunjoyo Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Sebelas Maret, Dr. Moewardi Hospital, Surakarta, Indonesia
  • Andy Nugroho Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Sebelas Maret, Dr. Moewardi Hospital, Surakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.10329

Keywords:

Anaesthetic care, Critical illness, ICU, Neuroprotection, Neuroprotective agent

Abstract

Neuroprotective agents are medications that can alter the course of metabolic events and have neuroprotective function. Neuroprotective agents are needed in patients undergoing a surgical procedure and clinical conditions that correspond with the central nervous system (CNS); also, in intensive care, the neuroprotective agents are often used to prevent complications and patient deterioration. Over the years, there is still no clear understanding of the potential for neuroprotection and the interactions between various drugs that serve a crucial role in anesthetic care and critical illness. This literature review will discuss further the mechanism of neuronal damage and various neuroprotective agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Fukuda S, Warner DS. Cerebral protection. BJA Br J Anaesth. 2007;99(1):10-7. https://doi.org/10.1093/bja/aem140 PMid:17573393 DOI: https://doi.org/10.1093/bja/aem140

Panahi Y, Mojtahedzadeh M, Najafi A, Rajaee SM, Torkaman M, Sahebkar A. Neuroprotective agents in the intensive care unit: Neuroprotective agents in ICU. J Pharmacopuncture. 2018;21(4):226-40. https://doi.org/10.3831/KPI.2018.21.026 PMid:30652049 DOI: https://doi.org/10.3831/KPI.2018.21.026

Tahir RA, Pabaney AH. Therapeutic hypothermia and ischemic stroke: A literature review. Surg Neurol Int. 2016;7(Suppl 14):S381-6. https://doi.org/10.4103/2152-7806.183492 PMid:27313963 DOI: https://doi.org/10.4103/2152-7806.183492

Engelhard K, Werner C. Mechanisms of neuronal injury and cerebral protection. In: Core Topics in Neuroanaesthesia and Neurointensive Care. United Kingdom: Cambridge University Press; 2018. p. 33-44. https://doi.org/10.1017/cbo9780511977558.004 DOI: https://doi.org/10.1017/CBO9780511977558.004

Chong J, Dumont T, Francis-Frank L, Balaan M. Sepsis and septic shock: A review. Crit Care Nurs Q. 2015;38(2):111-20. https://doi.org10.1097/cnq.0000000000000052 PMid:25741952 DOI: https://doi.org/10.1097/CNQ.0000000000000052

Gruenbaum SE, Zlotnik A, Gruenbaum BF, Hersey D, Bilotta F. Pharmacologic neuroprotection for functional outcomes after traumatic brain injury: A systematic review of the clinical literature. CNS Drugs. 2016;30(9):791-806. https://doi.org/10.1007/S40263-016-0355-2 PMid:27339615 DOI: https://doi.org/10.1007/s40263-016-0355-2

Chrousos GP, Katzung B, Trevor A. Basic and clinical pharmacology. In: Adrenocorticosteroids Adrenocortical Antagon 13th ed. New York: McGraw-Hill Medical; 2015.

Mahajan C, Chouhan RS, Rath GP, Dash HH, Suri A, Chandra PS, et al. Effect of intraoperative brain protection with propofol on postoperative cognition in patients undergoing temporary clipping during intracranial aneurysm surgery. Neurol India. 2014;62(3):262-8. https://doi.oeg/10.4103/0028-3886.136908 PMid:25033847 DOI: https://doi.org/10.4103/0028-3886.136908

Hudetz JA, Iqbal Z, Gandhi SD, Patterson KM, Byrne AJ, Hudetz AG, et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiol Scand. 2009;53(7):864-72. https://doi.org/10.1111/J.1399-6576.2009.01978.X PMid:19422355 DOI: https://doi.org/10.1111/j.1399-6576.2009.01978.x

Drummond JC, McKay LD, Cole DJ, Patel PM. The role of nitric oxide synthase inhibition in the adverse effects of etomidate in the setting of focal cerebral ischemia in rats. Anesth Analg. 2005;100(3):841-6. https://doi.org/10.1213/01.ANE.0000146519.85312.21 PMid:15728077 DOI: https://doi.org/10.1213/01.ANE.0000146519.85312.21

Singh DP, Chopra K. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke. Pharmacol Biochem Behav. 2014;120:33-42. https://doi.org/10.1016/J.PBB.2014.02.006 PMid:24561313 DOI: https://doi.org/10.1016/j.pbb.2014.02.006

Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED. Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(1):87-97. https://doi.org/10.1038/JCBFM.2008.93 PMid:18714331 DOI: https://doi.org/10.1038/jcbfm.2008.93

Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Niakan A, et al. Beta-blocker therapy in severe traumatic brain injury: A prospective randomized controlled trial. World J Surg. 2020;44(6):1844-53. https://doi.org/10.1007/S00268-020-05391-8 PMid:32002583 DOI: https://doi.org/10.1007/s00268-020-05391-8

Frishman WH, Saunders E. β-Adrenergic blockers. J Clin Hypertens (Greenwich). 2011;13(9):649-53. https://doi.org/10.1111/J.1751-7176.2011.00515.X PMid:21896144 DOI: https://doi.org/10.1111/j.1751-7176.2011.00515.x

Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): A multicentre, double-blind, randomised controlled trial. Lancet. 2020;395(10227):878-87. https://doi.org/10.1016/S0140-6736(20)30258-0 PMid:32087818 DOI: https://doi.org/10.1016/S0140-6736(20)30258-0

Iulia C, Ruxandra T, Costin LB, Liliana-Mary V. Citicoline- a neuroprotector with proven effects on glaucomatous disease. Rom J Ophthalmol. 2017;61(3):152-8. https://doi.org/10.22336/rjo.2017.29 PMid:29450391 DOI: https://doi.org/10.22336/rjo.2017.29

Sokolova I, Tazina S, Zakharova O. Neuroprotective therapy with citicoline and piracetam at acute cerebrovascular disease : Clinical and psychosomatic effects. FABAD J Pharm Sci. 2021;46(3):299-310.

Arifianto MR, Ma’ruf AZ, Ibrahim A, Bajamal AH. Role of hypertonic sodium lactate in traumatic brain injury management. Asian J Neurosurg. 2018;13(4):971-5. https://doi.org/10.4103/ajns.ajns_10_17 PMid:30459851 DOI: https://doi.org/10.4103/ajns.AJNS_10_17

Millet A, Cuisinier A, Bouzat P, Batandier C, Lemasson B, Stupar V, et al. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth. 2018;120(6):1295-303. https://doi.org/10.1016/j.bja.2018.01.025 PMid:29793596 DOI: https://doi.org/10.1016/j.bja.2018.01.025

Lim JA, Jung KY, Park B, Kim TJ, Jun JS, Kim KT, et al. Impact of a selective cyclooxygenase-2 inhibitor, celecoxib, on cortical excitability and electrophysiological properties of the brain in healthy volunteers: A randomized, double-blind, placebo-controlled study. PLoS One. 2019;14(2):e0212689. https://doi.org/10.1371/journal.pone.0212689 PMid:30794658 DOI: https://doi.org/10.1371/journal.pone.0212689

Downloads

Published

2022-09-02

How to Cite

1.
Sunjoyo A, Nugroho A. Neuroprotective Agents: A Simple Overview. Open Access Maced J Med Sci [Internet]. 2022 Sep. 2 [cited 2024 Nov. 23];10(F):578-82. Available from: https://oamjms.eu/index.php/mjms/article/view/10329

Issue

Section

Narrative Review Article

Categories