Antibacterial Activity of Gallic Acid from the Leaves of Altingia excelsa Noronha to Enterococcus faecalis

Authors

  • Risyandi Anwar Departement of Pediatric Dentistry, Faculty of Dentistry, Universitas Muhammadiyah Semarang, Semarang, Indonesia
  • Puspita Hajardhini Department of Oral Biology, Faculty of Dentistry, Universitas Muhammadiyah Semarang, Semarang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.10340

Keywords:

Altingia excels, Enterococcus faecalis, Antibacterial, Gallic acid

Abstract

AIM : The aim of this study was to determine the antibacterial compound of Altingia excelsa leaves to inhibit the growth of Entrococcus faecalis.

METHODS : The study was true experimental laboratory design. Separating the ethyl acetate extract via their compounds using various chromatographic techniques. Four extracts from A. excelsa leaves was obtained by the maceration method. The highest inhibitory effect was then continued to be isolated until one compound was obtained. Therefore, additional assay to determine chemical structure of compounds was done using UV spectra, infrared (IR), core magnetic resonance (NMR), and comparison with spectra data from the literature. The data were analyzed by ANACOVA assay.

RESULTS : The highest inhibitory effect was the ethyl acetate extract. The chemical structure of compound 1 was identified as an acidic compound 3,4,5 -trihydroxy benzoate, namely as the gallic acid which had inhibitory effect against Enterococcus faecalis. Antibacterial test against Enterococcus faecalis was done to determine inhibitory effect by its compound and MIC values showed of 12.25 µg/mL.

CONCLUSION : Gallic acid as the compound of Altingia excelsa leaves had a strong inhibitory effect to Enterococcus faecalis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Anil S, Anand PS. Early childhood caries: Prevalence, risk factors, and prevention. Front Pediatr. 2017;5:157. https://doi.org/10.3389/fped.2017.00157 PMid:28770188 DOI: https://doi.org/10.3389/fped.2017.00157

Petersen PE. The world oral health report 2003: Continuous improvement of oral health in the 21st century-the approach of the WHO global oral health programme. Community Dent Oral Epidemiol. 2003;31(Suppl 1):3-23. https://doi.org/10.1046/j.2003.com122.x PMid:15015736 DOI: https://doi.org/10.1046/j..2003.com122.x

Amalia R, Chairunisa F, Alfian MF, Al Supartinah. Indonesia: Epidemiological profiles of early childhood caries. Front Public Health. 2019;7:210. https://doi.org/10.3389/fpubh.2019.00210 PMid:31448251 DOI: https://doi.org/10.3389/fpubh.2019.00210

Dean JA. Treatment of deep caries, vital pulp exposure, and pulpless teeth. In: McDonald and Avery’s Dentistry for the Child and Adolescent. 10th ed. Amsterdam, Netherlands: Elsevier Inc.; 2016. p. 221-42. DOI: https://doi.org/10.1016/B978-0-323-28745-6.00013-2

Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological aspects of root canal infections and disinfection strategies: An update review on the current knowledge and challenges. Front Oral Health. 2021;2:672887. https://doi.org/10.3389/froh.2021.672887 PMid:35048015 DOI: https://doi.org/10.3389/froh.2021.672887

Luddin N, Ahmed HM. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: A review on agar diffusion and direct contact methods. J Conserv Dent. 2013;16(1):9-16. https://doi.org/10.4103/0972-0707.105291 PMid:23349569 DOI: https://doi.org/10.4103/0972-0707.105291

Dammaschke T, Jung N, Harks I, Schafer E. The effect of different root canal medicaments on the elimination of Enterococcus faecalis ex vivo. Eur J Dent. 2013;7(4):442-8. https://doi.org/10.4103/1305-7456.120683 PMid:24932119 DOI: https://doi.org/10.4103/1305-7456.120683

Lins RX, de Oliveira Andrade A, Junior RH, Wilson MJ, Lewis MA, Williams DW, et al. Antimicrobial resistance and virulence traits of Enterococcus faecalis from primary endodontic infections. J Dent. 2013;41(9):779-86. https://doi.org/10.1016/j.jdent.2013.07.004 PMid:23851130 DOI: https://doi.org/10.1016/j.jdent.2013.07.004

Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-29. https://doi.org/10.1016/j.foodcont.2014.05.047 DOI: https://doi.org/10.1016/j.foodcont.2014.05.047

de Castilho AL, Saraceni CH, Díaz IE, Paciencia ML, Suffredini IB. New trends in dentistry: Plant extracts against Enterococcus faecalis. The efficacy compared to chlorhexidine. Braz Oral Res. 2013;27(2):109-15. https://doi.org/10.1590/s1806-83242013000100017 PMid:23538423 DOI: https://doi.org/10.1590/S1806-83242013000100017

Anwar R, Setiawan A, Supriatno S, Supratman U. Bioactive compounds of rasamala (Altingia excelsa Nornha) leaves as c-myc proto oncogene expression suppressor of human tongue cancer cell in vitro. Dentino J Kedokt Gigi. 2018;3(2):203-10.

Pangestika AR. Aktivitas Antibakteri Minyak Atsiri Daun Rasamala (Altingia excelsa Noronha). Bogor Regency, Indonesia: IPB University; 2017.

Fernandes FH, Salgado HR. Gallic acid: Review of the methods of determination and quantification. Crit Rev Anal Chem. 2016;46(3):257-65. https://doi.org/10.1080/10408347.2015.109 5064 PMid:26440222 DOI: https://doi.org/10.1080/10408347.2015.1095064

Fuloria S, Tiew L, Karupiah S, Subramaniyan V, Gellknight C, Wu YS, et al. Development and validation of UV-visible method to determine gallic acid in hydroalcoholic extract of Erythrina fusca leaves. Int J Res Pharm Sci. 2020;11(4):6319-26. https://doi.org/10.26452/ijrps.v11i4.3386 DOI: https://doi.org/10.26452/ijrps.v11i4.3386

Patrick-Iwuanyanwu KC, Onyeike EN, Adhikari A. Isolation, identification and characterization of gallic acid derivatives from leaves of Tapinanthus bangwensis. J Nat Prod. 2014;7:14-9.

Tukiran T, Mahmudah F, Hidayati N, Shimizu K. A phenolic acid and its antioxidant activity from stem bark of chloroform fraction of Syzygium littorale (blume) amshoff (Myrtaceae). Molekul. 2016;11(2):180-9. https://doi.org/10.20884/1.jm.2016.11.2.215 DOI: https://doi.org/10.20884/1.jm.2016.11.2.215

Farrell DJ, Mendes RE, Rhomberg PR, Jones RN. Revised reference broth microdilution method for testing telavancin: Effect on MIC results and correlation with other testing methodologies. Antimicrob Agents Chemother. 2014;58(9):5547-51. https://doi.org/10.1128/AAC.03172-14 PMid:25022579 DOI: https://doi.org/10.1128/AAC.03172-14

Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity : A review. J Pharm Anal. 2016;6(2):71-9. https://doi.org/10.1016/j.jpha.2015.11.005 PMid:29403965 DOI: https://doi.org/10.1016/j.jpha.2015.11.005

Iseri L, Sahin E, Dolapci I, Yuruken Z. Minimum inhibitory concentration values and problematic disk break points of tigecycline against vancomycin and/or high-level aminoglycoside-resistant Enterococci. Alex J Med. 2015;52(2):125-9. https://doi.org/10.1016/j.ajme.2015.07.004 DOI: https://doi.org/10.1016/j.ajme.2015.07.004

Abri A, Maleki M. Isolation and identification of gallic acid from the Elaeagnus angustifolia leaves and determination of total phenolic, flavonoids contents and investigation of antioxidant activity. Iran Chem Commun. 2016;4(2):146-54.

Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. Cureus. 2020;12(3):e7257. https://doi.org/10.7759/cureus.7257 PMid:32292671 DOI: https://doi.org/10.7759/cureus.7257

Pinho E, Ferreira IC, Barros L, Carvalho AM, Soares G, Henriques M. Antibacterial potential of Northeastern Portugal wild plant extracts and respective phenolic compounds. Biomed Res Int. 2014;2014:814590. https://doi.org/10.1155/2014/814590 PMid:24804249 DOI: https://doi.org/10.1155/2014/814590

Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic Bacteria. Microb Drug Resist. 2013;19(4):256-65. https://doi.org/10.1089/mdr.2012.0244 PMid:23480526 DOI: https://doi.org/10.1089/mdr.2012.0244

Junaidi E, Anwar YA. Aktivitas antibakteri dan antioksidan asam galat dari kulit buah lokal yang diproduksi dengan tanase. ALCHEMY J Penelit Kim. 2018;14(1):131. DOI: https://doi.org/10.20961/alchemy.14.1.11300.131-142

Rajamanickam K, Yang J, Sakharkar MK. Gallic acid potentiates the antimicrobial activity of tulathromycin against two key bovine respiratory disease (BRD) causing-pathogens. Front Pharmacol. 2019;9:1486. https://doi.org/10.3389/fphar.2018.01486 PMid:30662404 DOI: https://doi.org/10.3389/fphar.2018.01486

Anwar R. Apigenin leaf of rasamala (Altingia excelsa Nornha) as antibacterial of Enterococcus faecalis. Insisiva Dent J. 2018;7(2):37-42. https://doi.org/10.18196/di.7294 DOI: https://doi.org/10.18196/di.7294

Anwar R, Setiawan A, Supriatno S, Supratman U. Rasamala leaves compound (Altingia excelsa Nornha) as an inhibitor of human tongue cancer cell proliferation in vitro. Stomatognatic (J K G Unej). 2019;16(2):42-8. DOI: https://doi.org/10.19184/stoma.v16i2.23090

Anwar R, Setiawan AS, Supriatno S, Supratman U. Apoptosis mediated anti-proliferative activity of kaempferol and quercetine isolated from the leaves of altingia excelsa against human tongue Sp-C1 cell lines. B-Dent J Kedokt Gigi Universitas Baiturrahmah. 2021;8(3):277-84. https://doi.org/10.33854/jbd.v8i3.5636 DOI: https://doi.org/10.33854/jbd.v8i3.563

Downloads

Published

2022-12-20

How to Cite

1.
Anwar R, Hajardhini P. Antibacterial Activity of Gallic Acid from the Leaves of Altingia excelsa Noronha to Enterococcus faecalis. Open Access Maced J Med Sci [Internet]. 2022 Dec. 20 [cited 2024 Nov. 21];10(A):1-6. Available from: https://oamjms.eu/index.php/mjms/article/view/10340