Antimicrobial and Cytotoxic Activities Screening of Marine Invertebrate-Derived Fungi Extract from West Sumatera, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2022.10374Keywords:
Marine-derived fungi, Xestospongia testudinaria, Placortis communis, Sarcophyton elegan, Subergorgia suberosa, Antimicrobial activity, Cytotoxic activityAbstract
BACKGROUND: The coral reef on Mandeh Island, West Sumatra, Indonesia, consists of an abundant source of sponge and soft coral. Secondary metabolites of marine-derived fungi isolated from the sponge and soft coral possess numerous biological activities.
AIM: This study collected, identified, and screened marine-derived fungi isolated from marine invertebrates for antibacterial and cytotoxic bioactivities.
MATERIALS AND METHODS: The marine invertebrates used are sponges; Xestospongia testudinaria and Placortis communis) and soft corals (Sarcophyton elegan and Subergorgia suberosa). The EtOAc extracts were analyzed for antimicrobial and cytotoxic activities using the diffusion agar method and brine shrimps lethality test.
RESULTS: After cultivating on rice medium, the EtOAc extracts of 22 isolated fungi showed potent antimicrobial activity with an inhibitory zone of 15.9 mm against Staphylococcus aureus (XT2 extract), and Pseudomonas aeruginosa of 26.7 mm (XT6 extract), and Candida albicans of 29 mm (SE5 extract). XT6 extract showed the potential cytotoxic activity with an LC50 value of 100 μg/ml.
CONCLUSION: The ability of the marine-derived fungi to produce bioactive compounds is promising potential as a source of antimicrobial and cytotoxic compounds.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Wilkinson CR. Symbiotic interactions between marine sponges and algae. In: Algae and Symbiosis: Plants, Animals, Fungi, Viruses Interactions Explored; 1992.
Bonugli-Santos RC, Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front Microbiol. 2015;6:269. https://doi.org/10.3389/fmicb.2015.00269 PMid:25914680 DOI: https://doi.org/10.3389/fmicb.2015.00269
Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H. Fungi ahoy diversity on marine wooden substrata in the high North. Fungal Ecol. 2014;8(1):46-58. DOI: https://doi.org/10.1016/j.funeco.2013.12.002
Liming J, Chunshan Q, Xiyan H, Shengdi F. Potential pharmacological resources: Natural bioactive compounds from marine-derived fungi. Mar Drugs. 2016;14(4):76. https://doi.org/10.3390/md14040076 DOI: https://doi.org/10.3390/md14040076
Handayani D, Artasasta MA, Mutia D, Atikah N, Rustini, Tallei TE. Antimicrobial and cytotoxic activities screening of fungal secondary metabolites isolated from marine sponge Callyspongia sp. AACL Bioflux. 2021;14(1):249-58.
Aminah I, Putra AE, Arbain D, Handayani D. Antibacterial potential of fungi derived extracts of marine sponge Acanthostrongylophora ingens. AACL Bioflux. 2020;13(2):1118-25.
Handayani D, Ananda N, Artasasta MA, Ruslan R, Fadriyanti O, Tallei TE. Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J Appl Pharm Sci. 2019;9(3):9-13. https://doi.org/10.7324/JAPS.2019.90302 DOI: https://doi.org/10.7324/JAPS.2019.90302
Zheng L, Chen H, Han X, Lin W, Yan X. Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol. 2005;21(2):201-6. DOI: https://doi.org/10.1007/s11274-004-3318-6
Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc. 2010;5(3):479-90. https://doi.org/10.1038/nprot.2009.233 PMid:20203665 DOI: https://doi.org/10.1038/nprot.2009.233
Sandrawati N, Hati SP, Yunita F, Putra AE, Ismed F, Tallei TE, et al. Antimicrobial and cytotoxic activities of marine sponge-derived fungal extracts isolated from Dactylospongia sp. J Appl Pharm Sci. 2020;10(4):28-33. https://doi.org/10.7324/JAPS.2020.104005 DOI: https://doi.org/10.7324/JAPS.2020.104005
Handayani D, Artasasta MA. Antibacterial and cytotoxic activities screening of symbiotic fungi extract isolated from marine sponge Neopetrosia chaliniformis AR-01. J Appl Pharm Sci. 2017;7(5):66-9. https://doi.org/10.7324/JAPS.2017.70512 DOI: https://doi.org/10.7324/JAPS.2017.70512
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982;45(5):31-4. https://doi.org/10.1055/s-2007-971236 PMid:17396775 DOI: https://doi.org/10.1055/s-2007-971236
Gomes NG, Lefranc F, Kijjoa A, Kiss R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs. 2015;13:3950-91. DOI: https://doi.org/10.3390/md13063950
Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, et al. Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res. 2010;33(2):231-5. https://doi.org/10.1007/s12272-010-0207-4 PMid:20195823 DOI: https://doi.org/10.1007/s12272-010-0207-4
Zhang L, Peng XM, Damu GL, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev. 2014;34(2):340-437. https://doi.org/10.1002/med.21290 PMid:23740514 DOI: https://doi.org/10.1002/med.21290
Chopra AK, Chander H, Singh J. Lipolytic activity of Syncephalastrum racemosum. J Dairy Sci. 1982;65(10):1890-4. https://doi.org/10.3168/jds.S0022-0302(82)82434-X DOI: https://doi.org/10.3168/jds.S0022-0302(82)82434-X
Fu S Bin, Yang JS, Cui JL, Sun DA. Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity. Fitoterapia. 2013;86(1):123-8. https://doi.org/10.1016/j.fitote.2013.02.007 DOI: https://doi.org/10.1016/j.fitote.2013.02.007
Teynampet KB. Original research article in vitro anti-diabetic activity of ethanolic and acetone extracts of endophytic fungi Syncephalastrum racemosum isolated from the seaweed Gracilaria corticata by alpha-amylase inhibition assay method. IJCMAS. 2015;4(1):254-9.
Buayairaksa M, Kanokmedhakul S, Kanokmedhakul K, Moosophon P, Hahnvajanawong C, Soytong K. Cytotoxic lasiodiplodin derivatives from the fungus Syncephalastrum racemosum. Arch Pharm Res. 2011;34(12):2037-41. https://doi.org/10.1007/s12272-011-1205-x PMid:22210028 DOI: https://doi.org/10.1007/s12272-011-1205-x
Mathur C, Prakash R, Ali A, Kaur J, Cameotra SS, Prakash TN. Emulsification and hydrolysis of oil by Syncephalastrum racemosum. Defence Sci J. 2010;60(3):251-4. DOI: https://doi.org/10.14429/dsj.60.350
Ibrahim M, Kaushik N, Sowemimo A, Chhipa H, Koekemoer T, Van De Venter M, et al. Antifungal and antiproliferative activities of endophytic fungi isolated from the leaves of Markhamia tomentosa. Pharm Biol. 2017;55(1):590-5. https://doi.org/10.1080/13880209.2016.1263671 DOI: https://doi.org/10.1080/13880209.2016.1263671
Salvatore MM, Alves A, Andolfi A. Secondary metabolites of lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins (Basel). 2020;12(7):457. https://doi.org/10.3390/toxins12070457 PMid:32709023 DOI: https://doi.org/10.3390/toxins12070457
Bujaranipalli S, Das S. Synthesis of (3R,5S)-5-hydroxy-de-O-methyllasiodiplodin: A facile and stereoselective approach. Tetrahedron Lett. 2015;56(24):3747-9. https://doi.org/10.1016/j.tetlet.2015.04.005 DOI: https://doi.org/10.1016/j.tetlet.2015.04.005
Wang W, Liao Y, Zhang B, Gao M, Ke W, Li F, et al. Citrinin monomer and dimer derivatives with antibacterial and cytotoxic activities isolated from the deep sea-derived fungus Penicillium citrinum NLG-S01-P1. Mar Drugs. 2019;17(1):46. https://doi.org/10.3390/md17010046 PMid:30634700 DOI: https://doi.org/10.3390/md17010046
Lai D, Brötz-Oesterhelt H, Müller WE, Wray V, Proksch P. Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia. 2013;91:100-6. https://doi.org/10.1016/j.fitote.2013.08.017 DOI: https://doi.org/10.1016/j.fitote.2013.08.017
Liu QY, Zhou T, Zhao YY, Chen L, Gong MW, Xia QW, et al. Antitumor effects and related mechanisms of penicitrinine A, a novel alkaloid with a unique spiro skeleton from the marine fungus Penicillium citrinum. Mar Drugs. 2015;13(8):4733-53. https://doi.org/10.3390/md13084733 PMid:6264002 DOI: https://doi.org/10.3390/md13084733
Huang GL, Zhou XM, Bai M, Liu YX, Zhao YL, Luo YP, et al. Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum. Mar Drugs. 2016;14(10):177. https://doi.org/10.3390/md14100177 PMid:27735855 DOI: https://doi.org/10.3390/md14100177
El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, Saad HE, et al. Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod. 2013;76(6):1099-104. https://doi.org/10.1021/np4001366 PMid:23713692 DOI: https://doi.org/10.1021/np4001366
Downloads
Published
How to Cite
License
Copyright (c) 2022 Dwi Bakhtra, Yanwirasti Yanwirasti, Fatma Sri Wahyuni, Ibtisamatul Aminah, Dian Handayani (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0