Effect of Nanosilica Incorporation on Flexural Strength, Shear Bond Strength, and Color of Veneering Porcelain after Thermocycling

Authors

  • Asmaa Amer Department of Fixed Prosthodontics, Faculty of Dentistry, Minia University, Minya, Egypt
  • Cherif Mohsen Department of Fixed Prosthodontics, Faculty of Dentistry, Minia University, Minya, Egypt
  • Raiessa Hashem Department of Fixed Prosthodontics, Faculty of Dentistry, Minia University, Minya, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.10390

Keywords:

Silica nanoparticles, Flexural strength, Shear bond strength, Veneered porcelain chipping

Abstract

AIM: The focus of this research was to see how silica nanoparticles changed veneering porcelain over a zirconia core affected flexure strength, shear bond strength, and color.

METHODS: A total number of 30 zirconia core veneer samples were constructed and classified according to silica nanoparticles modification of veneering porcelain into two groups: Group 1 (control group) veneering porcelain without any modification (n = 15) and Group 2 (modified group) veneering porcelain modified by silica nanoparticles (n = 15). Silica nanoparticles were added to the veneering porcelain powder at a rate of 5% by weight. Silica nanoparticles powder and veneering porcelain powder were manually crushed for about 10 min using a pestle and mortar then the mixed powder was combined with the porcelain moldings liquid to make a paste. After thermal cycling, each group was examined for flexural strength, shear bond strength, and color measurement (n = 5). Universal testing equipment was used to determine flexural and shear bond strength. The color shift was measured using a spectrophotometer.

RESULTS: Flexural strength levels in the modified group (280.9 ± 29.85 Mpa) were substantially higher than in the control group (431.78 ± 22.73 Mpa). Shear bond strength values in the modified group (34.31 ± 5.6) were significantly higher than in the control group (26.97 ± 4.03). Color change was within the clinical acceptable range (1.71 ± 0.32).

CONCLUSIONS: The addition of silica nanoparticles to veneering porcelain improved the flexural and shear bond strength, as well as, color change was within the clinical acceptable limits.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher H, Elmalky W, et al. Revolution of current dental zirconia: A comprehensive review. Molecules. 2022;27(5):1699. https://doi.org/10.3390/molecules27051699 PMid:35268800 DOI: https://doi.org/10.3390/molecules27051699

Nistor L, Gradinaru M, Rica R, Marasescu P, Stan M, Manolea H, et al. Zirconia use in dentistry-manufacturing and properties. Curr Health Sci J. 2019:45(1):28-35. https://doi.org/10.12865/CHSJ.45.01.03 PMid:31297259

Tezulas E, Yildiz C, Kucuk C, Kahramanoglu E. Current status of zirconia-based all-ceramic restorations fabricated by the digital veneering technique: A comprehensive review. Int J Comput Dent. 2019;22(3):217-30. PMid:31463486

AlKahtani RN. The implication and applications of nanotechnology in dentistry. Saudi Dent J. 2018;30(2):107-16. https://doi.org/10.1016/j.sdentj.2018.01.002 PMid:29628734 DOI: https://doi.org/10.1016/j.sdentj.2018.01.002

Ha SW, Weiss D, Weitzmann MN, Beck GR Jr. Applications of silica-based nanomaterials in dental and skeletal biology. In: Nanobiomaterials in Clinical Dentistry. Netherlands: Elsevier; 2019. p. 77-12. DOI: https://doi.org/10.1016/B978-0-12-815886-9.00004-8

Rezvani MB, Atai M, Hamze F, Hajrezai R. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins. J Dent Res Dent Clin Dent Prospects. 2016;10(2):112-7. https://doi.org/10.15171/joddd.2016.018 PMid:27429728 DOI: https://doi.org/10.15171/joddd.2016.018

Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008;36(5):316-21. https://doi.org/10.1016/j.jdent.2008.01.017 PMid:18339469 DOI: https://doi.org/10.1016/j.jdent.2008.01.017

Aalaei SH, Nematollahi F, Vartanian M, Beyabanaki E. Comparative study of shear bond strength of three veneering ceramics to a zirconia core. J Dent Biomater. 2016;3(1):186-91.

Mohamed M R, Abdel Kader S H, Aboushady Y H and Abdel-latif M M. Biaxial flexural strength of un-shaded and shaded monolithic translucent monolithic zirconia. Alex DJ.2018; 43:69-73. DOI: https://doi.org/10.21608/adjalexu.2018.57627

Sajjad A, Bakar WZ, Mohamad D, Kannan TP. Characterization and enhancement of physico-mechanical properties of glass ionomer cement by incorporating a novel nano zirconia silica hydroxyapatite composite synthesized via sol-gel. AIMS Mater Sci. 2019;6(5):730-47. https://doi.org/10.3934/matersci.2019.5.730 DOI: https://doi.org/10.3934/matersci.2019.5.730

Saba DA, Salama RA, Haridy R. Effect of different beverages on the color stability and microhardness of CAD/CAM hybrid versus feldspathic ceramic blocks: An in-vitro study. Future Den J. 2017;3:61-6. https://doi.org/10.1016/j.fdj.2017.07.001 DOI: https://doi.org/10.1016/j.fdj.2017.07.001

Foong L, Foroughi M, Mirhosseini A, Safaei M, Jahani S, Mostafavi M, et al. Applications of nano-materials in diverse dentistry regimes. RSC Adv. 2020;10:15430-60. https://doi.org/10.1039/D0RA00762E DOI: https://doi.org/10.1039/D0RA00762E

Pipattanachat S, Qin J, Rokaya D, Thanyasrisung P, Srimaaneepong V. Biofilm inhibition and bactericidal activity of NiTi alloy coated with graphene oxide/silver nanoparticles via electrophoretic deposition. Sci Rep. 2021;11(1):14008. https://doi.org/10.1038/s41598-021-92340-7 PMid:34234158 DOI: https://doi.org/10.1038/s41598-021-92340-7

Topouzi M, Kontonasaki E, Bikiaris D, Papadopoulou L, Konstantinos M, Koidis P. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. J Mech Behav Biomed Mater. 2017;69:213-22. https://doi.org/10.1016/j.jmbbm.2017.01.013 PMid:28088693 DOI: https://doi.org/10.1016/j.jmbbm.2017.01.013

Abhay SS, Ganapathy D, Veeraiyan DN, Ariga P, Heboyan A, Amornvit P, et al. Wear resistance, color stability and displacement resistance of milled PEEK crowns compared to zirconia crowns under stimulated chewing and high-performance aging. Polymers (Basel). 2021;13(21):3761. https://doi.org/10.3390/polym13213761 PMid:34771318 DOI: https://doi.org/10.3390/polym13213761

Warreth A, Elkareimi Y. All-ceramic restorations: A review of the literature. Saudi Dent J. 2020;32(8):365-72. https://doi.org/10.1016/j.sdentj.2020.05.004 PMid:34588757 DOI: https://doi.org/10.1016/j.sdentj.2020.05.004

Hamza TA, Sherif RM. Fracture resistance of monolithic glass-ceramics versus bilayered zirconia-based restorations. J Prosthodont. 2019;28(1):e259-64. https://doi.org/10.1111/jopr.12684 PMid:29044828 DOI: https://doi.org/10.1111/jopr.12684

Ebrahimi F. Nanocomposites New Trends and Developments. 1st ed. Janeza Trdine 9, Croatia: InTech; 2010.

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Nathan AS, Tah R, Balasubramanium MK. Evaluation of fracture toughness of zirconia silica nano-fibres reinforced feldespathic ceramic. J Oral Biol Craniofac Res. 2018;8(3):221-4. DOI: https://doi.org/10.1016/j.jobcr.2017.09.003

Yoon HI, Yeo IS, Yi YJ, Kim SH, Lee JB, Han JS. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics. Acta Odontol Scand. 2015;73(7):488-95. https://doi.org/10.3109/00016357.2014.986755 PMid:25643808 DOI: https://doi.org/10.3109/00016357.2014.986755

Elsheemy AA, Bakry SI, Azer AS, Abdelrazik TM. The effect of two aging methods on the flexural strength and crystal structure of yttria stabilised zirconia polycrystals (in vitro study). Alex Dent J. 2017;42:193-97. DOI: https://doi.org/10.21608/adjalexu.2017.57926

Miura D, Ishida Y, Miyasaka T, Aoki H, Shinya A. Reliability of different bending test methods for dental press ceramics. Materials (Basel). 2020;13(22):5162. https://doi.org/10.3390/ma13225162 PMid:33207710 DOI: https://doi.org/10.3390/ma13225162

Chiang TY, Yang CC, Chen YH, Yan M, Ding SJ. Shear bond strength of ceramic veneers to zirconia-calcium silicate cores. Coatings. 2021;11:1326. https://doi.org/10.3390/coatings11111326 DOI: https://doi.org/10.3390/coatings11111326

Abdullah AO, Hui Y, Sun X, Pollington S, Muhammed FK, Liu Y. Effects of different surface treatments on the shear bond strength of veneering ceramic materials to zirconia. J Adv Prosthodont. 2019;11(1):65-74. https://doi.org/10.4047/jap.2019.11.1.65 PMid:30847051 DOI: https://doi.org/10.4047/jap.2019.11.1.65

Saito A, Komine F, Blatz MB, Matsumura HA. Comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent. 2010;104:247-57. https://doi.org/10.1016/S0022-3913(10)60133-3 PMid:20875529 DOI: https://doi.org/10.1016/S0022-3913(10)60133-3

Salem RS, Ozkurt-Kayahan Z, Kazazoglu E. In vitro evaluation of shear bond strength of three primer-resin cement systems to monolithic zirconia. Int J Prosthodont. 2019;32(6):519-26. https://doi.org/10.11607/ijp.6258 PMid:31664268 DOI: https://doi.org/10.11607/ijp.6258

Dawood L, El-Farag SA. Influence of staining beverages and surface finishing on color stability and surface roughness of all ceramic restorations: Laboratory study. Egypt Dent J. 2021;67(3):2413:22. https://doi.org/10.21608/edj.2021.71452.1579 DOI: https://doi.org/10.21608/edj.2021.71452.1579

Olms C, Martin V. Reproducibility and reliability of intraoral spectrophotometers. Dtsch Zahnärztl Z Int. 2019;1:67-75.

Harding AB, Norling BK, Teixeira EC. The effect of surface treatment of the interfacial surface on fatigue-related microtensile bond strength of milled zirconia to veneering porcelain. J Prosthodont. 2012;21(5):346-52. https://doi.org/10.1111/j.1532-849X.2012.00843.x PMid:22443122 DOI: https://doi.org/10.1111/j.1532-849X.2012.00843.x

Salman AD, Jani GH, Fatalla AA. Comparative study of the effect of incorporating SiO2 nano-particles on properties of poly methyl methacrylate denture bases. Biomed Pharmacol J. 2017;10(3):1525-35. https://doi.org/10.13005/bpj/1262 DOI: https://doi.org/10.13005/bpj/1262

Kanat B, Cömlekoglu EM, Dündar-Çömlekoğlu M, Sen BH, Özcan M, Ali Güngör M. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J Prosthodont. 2014;23(6):445-55. https://doi.org/10.1111/jopr.12130 PMid:24417370 DOI: https://doi.org/10.1111/jopr.12130

Fattah Z, Jowkar Z, Rezaeian S. Microshear bond strength of nanoparticle-incorporated conventional and resin-modified glass ionomer to caries-affected dentin. Int J Dent. 2021;2021:5565556. https://doi.org/10.1155/2021/5565556 PMid:33953750 DOI: https://doi.org/10.1155/2021/5565556

Kotanidis A, Kontonasaki E, Koidis P. Color alterations of a PMMA resin for fixed interim prostheses reinforced with silica nanoparticles. J Adv Prosthodont. 2019;11(4):193-201. https://doi.org/10.4047/jap.2019.11.4.193 PMid:31497266 DOI: https://doi.org/10.4047/jap.2019.11.4.193

Downloads

Published

2022-09-01

How to Cite

1.
Amer A, Mohsen C, Hashem R. Effect of Nanosilica Incorporation on Flexural Strength, Shear Bond Strength, and Color of Veneering Porcelain after Thermocycling. Open Access Maced J Med Sci [Internet]. 2022 Sep. 1 [cited 2024 Apr. 24];10(D):380-8. Available from: https://oamjms.eu/index.php/mjms/article/view/10390