New Cholesteryl Ester Transfer Protein from Indonesian Herbal Plants as Candidate Treatment of Cardiovascular Disease
DOI:
https://doi.org/10.3889/oamjms.2022.10457Keywords:
Cardiovascular disease, Cholesterol ester transfer protein inhibitor, Molecular docking, Indonesian plants, Phytochemical screening, In silicoAbstract
BACKGROUND: There is a strong negative relationship between high-density lipoprotein cholesterol (HDL-C) and the risk of cardiovascular disease (CVD). Cholesterol ester transfer protein (CETP) is a glycoprotein transporter that transfers cholesterol esters to very low-density lipoprotein and low-density lipoprotein cholesterol (LDL-C). The CETP inhibitor is a new strategy against CVD because of its ability to increase HDL-C. Various Indonesian plants have not been optimally used, and in silico phytochemical screening of these plants showing potential as CETP inhibitors is still limited.
AIM: This study for exploring Indonesian phytochemicals as CETP inhibitors for new CVD treatments.
METHODS: We screened 457 phytochemicals registered in the herbal database and met Lipinski’s rule of five. Their molecular structures were downloaded from the PubChem database. The three-dimensional structures of CETP and dalcetrapib (the CETP inhibitor standard) were obtained from a protein data bank (http://www.rcsb.org/pdb/) with the 4EWS code and ZINC database with the ZINC03976476 code, respectively. CETP–dalcetrapib binding complexes were validated 5 times using AutoDock Vina 1.1.2 software. Interactions between CETP and phytochemicals were molecularly docked with the same software and visualized using Pymol 1.8× software.
RESULTS: Dalcetrapib had a docking score of −9.22 kcal/mol and bound to CETP at Ser230 and His232 residues. The 11 phytochemicals had lower binding scores than dalcetrapib, but only L-(+)-tartaric acid, chitranone, and oxoxylopine could interact with CETP at the Ser230 residue. These are commonly found in Tamarindus indica, Plumbago zeylanica, and Annona reticulata, respectively.
CONCLUSION: L-(+)-Tartaric acid, chitranone, and oxoxylopine show potential as CETP inhibitors in silico.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Li Z, Lin L, Wu H, Yan L, Wang H, Yang H, et al. Global, regional, and national death, and Disability-Adjusted Life-Years (DALYs) for cardiovascular disease in 2017 and trends and risk analysis from 1990 to 2017 using the global burden of disease study and implications for prevention. Front Public Health. 2021;9:559751. https://doi.org/10.3389/fpubh.2021.559751 PMid:34778156 DOI: https://doi.org/10.3389/fpubh.2021.559751
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1999-2019. Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010 PMid:33309175 DOI: https://doi.org/10.1016/j.jacc.2020.11.010
Maharani A, Sujarwoto, Praveen D, Oceandy D, Tampubolon G, Patel A. Cardiovascular disease risk factor prevalence and estimated 10-year cardiovascular risk scores in Indonesia: The SMARThealth Extend study. PLosOne. 2019;14(4):e0215219. https://doi.org/10.1371/journal.pone.0215219 PMid:31039155 DOI: https://doi.org/10.1371/journal.pone.0215219
Kosmas CE, DeJesus E, Rosario D, Vittorio TJ. CETP inhibition: Past failures and future hopes. Clin Med Insights Cardiol. 2016;10:37-42. https://doi.org/10.4137/cmc.s32667 PMid:26997876 DOI: https://doi.org/10.4137/CMC.S32667
Shinkai H. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases. Vasc Health Risk Manag. 2012;8:323-31. https://doi.org/10.2147/vhrm.s25238 PMid:22661899 DOI: https://doi.org/10.2147/VHRM.S25238
Farrer S. Beyond statins: Emerging evidence for HDL-increasing therapies and diet in treating cardiovascular disease. Adv Prev Med. 2018;2018:6024747. https://doi.org/10.1155%2F2018%2F6024747 PMid:30112217
Chirasani VR, Senapati S. How cholesteryl ester transfer protein can also be a potential triglyceride transporter. Sci Rep. 2017;7(1):6159. https://doi.org/10.1038/s41598-017-05449-z PMid:28733595 DOI: https://doi.org/10.1038/s41598-017-05449-z
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, et al. Pharmacological intervention to modulate HDL: What do we target? Front Pharmacol. 2018;8:989. https://doi.org/10.3389/fphar.2017.00989 PMid:29403378 DOI: https://doi.org/10.3389/fphar.2017.00989
Filippatos TD, Kei A, Elisaf MS. Anacetrapib, a new CETP inhibitor: The new tool for the management of dyslipidemias? Diseases. 2017;5(4):21. https://doi.org/10.3390/diseases5040021 PMid:28961179 DOI: https://doi.org/10.3390/diseases5040021
Rifaioglu AS, Atas H, Martin MJ, Atalay RC, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief Bioinform. 2019;20(5)1878-912. https://doi.org/10.1093/bib/bby061 PMid:30084866 DOI: https://doi.org/10.1093/bib/bby061
Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola JM. Molecular docking with Gaussian Boson sampling. Sci Adv. 2020;6(23):eaax1950. https://doi.org/10.1126/sciadv.aax1950 PMid:32548251 DOI: https://doi.org/10.1126/sciadv.aax1950
Liu S, Mistry A, Reynolds JM, Lloyd DB, Griffor MC, Perry DA, et al. Crystal structures of cholesteryl ester transfer protein in complex with inhibitors. JBC. 2012;287(44):37321-9. https://doi.org/10.1074/jbc.M112.380063 PMid:22961980 DOI: https://doi.org/10.1074/jbc.M112.380063
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rey KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res. 2018;59(5):772-83. https://doi.org/10.1194/jlr.R082735 PMid:29487091 DOI: https://doi.org/10.1194/jlr.R082735
Nicholls SJ, Bubb K. The mystery of evacetrapib-why are CETP inhibitors failing? Expert Rev Cardiovasc Ther. 2020;18(3):127-30. https://doi.org/10.1080/14779072.2020.1745633 PMid:32200670 DOI: https://doi.org/10.1080/14779072.2020.1745633
Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front Cell Infect Microbiol. 2021;11:684515. https://doi.org/10.3389/fcimb.2021.684515 PMid:34079770 DOI: https://doi.org/10.3389/fcimb.2021.684515
Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature. 2000;406(6792):203-7. https://doi.org/10.1038/35018119 PMid:10910363 DOI: https://doi.org/10.1038/35018119
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. https://doi.org/10.3390%2Fijms20184331 PMid:31487867 DOI: https://doi.org/10.3390/ijms20184331
Ta’rraga WA, Garda HA, Toledo JD, Gonzalez MC. Potential inhibitors of the activity of the cholesterol-ester transfer protein. J Comput Biol. 2019;26(12):1458-69. https://doi.org/10.1089/cmb.2018.0227 PMid:31356116 DOI: https://doi.org/10.1089/cmb.2018.0227
Ranaletta M, Bierilo KK, Chen Y, Milot D, Chen Q, Tung E, et al. Biochemical characterization of cholesteryl ester transfer protein inhibitors. J Lipid Res. 2010;51(9):2739-52. https://doi.org/10.1194/jlr.m007468 PMid:20458119 DOI: https://doi.org/10.1194/jlr.M007468
Ferreira L, Dos Santos R, Oliva G, Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-421. https://doi.org/10.3390/molecules200713384 PMid:26205061 DOI: https://doi.org/10.3390/molecules200713384
Khalaf RA, Sabbah D, Al-Shalabi E, Bishtawi S, Albadawi G, Sheika GA. Synthesis, biological evaluation, and molecular modeling study of substituted benzyl benzamides as CETP inhibitors. Arch Pharm (Weinheim). 2017;350(12):e1700204. https://doi.org/10.1002/ardp.201700204 PMid:29112287 DOI: https://doi.org/10.1002/ardp.201700204
Khalaf RA, Al-Rawashdeh S, Sabbah D, Sheikha GA. Molecular docking and pharmacophore modelling studies of fluorinated benzamides as potential CETP inhibitors. Med Chem. 2017;13(3):239-53. https://doi.org/10.2174/1573406412666161104121042 PMid:27823564 DOI: https://doi.org/10.2174/1573406412666161104121042
Zhang M, Lei D, Peng B, Yang M, Zhang L, Charles MA, et al. Assessing the mechanisms of cholesteryl ester transfer protein inhibitors. Biochim Biophys Acta Mol Cell Biol. 2017;1862(12):1606-17. https://doi.org/10.1016/j.bbalip.2017.09.004 PMid:28911944 DOI: https://doi.org/10.1016/j.bbalip.2017.09.004
Arshad MS, Imran M, Ahmad A, Sohaib M. Ullah A, Nisa MU, et al. Tamarind: A diet-based strategy against lifestyle maladies. Food Sci Technol. 2019;7(11):3378-90. https://doi.org/10.1002/fsn3.1218 PMid:31762991 DOI: https://doi.org/10.1002/fsn3.1218
Salamah NN, Aryati WD, Yanuar A. Virtual screening of Indonesian herbal database as adenosine A2A antagonist using AutoDock and AutoDock Vina. Pharmacogn J. 2019;11(6):1219-24. https://doi.org/10.5530/pj.2019.11.189 DOI: https://doi.org/10.5530/pj.2019.11.189
Nugraha AS, Damayanti YD, Wangchuk P, Keller PA. Anti-infective and anti-cancer properties of the Annona species: Their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules. 2019;24(23):4419. https://doi.org/10.3390/molecules24234419 PMid:31816948 DOI: https://doi.org/10.3390/molecules24234419
Aprilia CA, Ninditasari G, Walujo D. Hypolipidemic effect and antioxidant activity of tamarind leaves extract in hypercholesterol-fed rats. Indonesian J Cardiol. 2017;38(2):72-80. https://doi.org/10.30701/ijc.v38i2.730 DOI: https://doi.org/10.30701/ijc.v38i2.730
Lim CY, Junit SM, Aziz AA, Jayapalan JJ, Hashim OH. The hypolipidemic effects of Tamarindus indica fruit pulp extract in normal and diet-induced hypercholesterolemic hamsters are associated with altered levels of serum proteins. Electrophoresis. 2018;39(23):2965-73. https://doi.org/10.1002/elps.201800258 PMid:30280388 DOI: https://doi.org/10.1002/elps.201800258
Uchenna UE, Shori AB, Baba AS. Tamarindus indica seeds improve carbohydrate and lipid metabolism: An in vivo study. J Ayurveda Integr Med. 2018;9(4):258-65. https://doi.org/10.1016/j.jaim.2017.06.004 PMid:29203351 DOI: https://doi.org/10.1016/j.jaim.2017.06.004
Asgary S, Soltani R, Barzegar N, Sarrafzadegan N. Evaluation on the effects of Tamarindus Indica L. fruit on body weight and several cardiometabolic risk factors in obese and overweight adult patients: A randomized controlled clinical trial. Int J Prev Med. 2020;11:24. https://doi.org/10.4103%2Fijpvm.IJPVM_558_18 PMid:32175064
Pai SA, Munshi RP, Pancal FH, Gaur IS, Mestry SN, Gursahani MS, et al. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomed Pharmacother. 2019;111(2019):686-94. https://doi.org/10.1016/j.biopha.2018.12.139 PMid:30611993 DOI: https://doi.org/10.1016/j.biopha.2018.12.139
Sasso S, Souza PC, Santana LF, Cardaso CA, Alves FM, Portugal LC, et al. Use of an extract of Annona muricata Linn to prevent high-fat diet induced metabolic disorders in C57BL/6 mice. Nutrients. 2019;11(7):1509. https://doi.org/10.3390/nu11071509 PMid:3126972 DOI: https://doi.org/10.3390/nu11071509
Downloads
Published
How to Cite
License
Copyright (c) 2022 Ratih Dewi Yudhani, Khariz Fahrurrozi, Dono Indarto (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0