Firmicutes/Bacteroidetes Ratio of Gut Microbiota and Its Relationships with Clinical Parameters of Type 2 Diabetes Mellitus: A Systematic Review

Authors

  • Yulianto Kusnadi Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya, Mohammad Hoesin General Hospital, Palembang, Indonesia https://orcid.org/0000-0003-4347-9421
  • Mgs Irsan Saleh Department of Pharmacology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
  • Zulkhair Ali Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya, Mohammad Hoesin General Hospital, Palembang, Indonesia
  • Hermansyah Hermansyah Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Palembang, Indonesia
  • Krisna Murti Department of Anatomical Pathology, Faculty of Medicine, Universitas Sriwijaya, Mohammad Hoesin General Hospital, Palembang, Indonesia
  • Zen Hafy Department of Histology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
  • N. S. Eddy Yuristo Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya, Mohammad Hoesin General Hospital, Palembang, Indonesia https://orcid.org/0000-0003-4347-9421

DOI:

https://doi.org/10.3889/oamjms.2023.10478

Keywords:

F/B ratio, dysbiosis, gut microbiota, type 2 diabetes mellitus

Abstract

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a global health problem with multifactorial etiopathogenesis. Recent studies show gut microbiota dysbiosis that plays a crucial role in pathogenesis and complications of T2DM. Firmicutes and Bacteroidetes phylum ratio (F/B ratio) is one of the markers for gut microbiota dysbiosis which remains to be investigated in recent decades.

AIM: The present study summarized the correlation between B/F ratio with some clinical parameters of T2DM.

METHODS: A systematic review of the literature for clinical studies was performed on PubMed, ProQuest, and Google Scholar. Studies were assessed for risk of bias using Newcastle–Ottawa scale. All observational cross-sectional, case–control, and cohort studies that studied F/B or B/F ratio in T2DM were included. Key evidence was analyzed and qualitatively synthesized.

RESULT: Seven relevant studies were included. Five studies were high-quality and two studies were medium-quality. The F/B ratio of the gut microbiota varies in different types of T2DM and is associated with different clinical parameters. The F/B ratio decreased inT2DM and had significant negative correlation with OGTT blood glucose but had unsignificant correlation with fasting fasting blood glucose, postprandial blood glucose, and HbA1C. The F/B ratio might increase in T2DM and was positively correlated with lean tissue index and associated with the wider left atrial size.

CONCLUSION: Current systematic review demonstrated that intestinal microbiota dysbiosis played a key role in the pathogenesis of T2DM. The gut microbiota F/B ratio was varied and was associated with various clinical parameters in T2DM.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42:S10-5. https://doi.org/10.1016/j.jcjd.2017.10.003 PMid:29650080 DOI: https://doi.org/10.1016/j.jcjd.2017.10.003

Cho NH, Kirigia J, Mbanya JC, Ogurstova, K, Guariguata L, Rathmann W. IDF Diabetes Atlas. 8th ed. 2017. Available from: https://www.diabetesatlas.org [Last accessed on 2022 May 31].

Badan Penelitian dan Pengembangan Kesehatan KKR. Riset Kesehatan Dasar; 2013. Available from: https://www.pusdatin. kemkes.go.id[Last accessed on 2022 May 31].

Badan Penelitian dan Pengembangan Kesehatan KKR. Riset Kesehatan Dasar; 2018. Available from: https://www.pusdatin. kemkes.go.id [Last accessed on 2022 May 31].

Geng T, Huang T. Gene-environment interactions and Type 2 diabetes. Asia Pac J Clin Nutr. 2020;29(2):220-6. https://doi. org/10.6133/apjcn.202007_29(2).0002

PMid:32674227

Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental risk factors for developing Type 2 diabetes mellitus: A systematic review. Int J Environ Res Public Health. 2018;15(1):78. https://doi.org/10.3390/ijerph15010078 PMid:29304014 DOI: https://doi.org/10.3390/ijerph15010078

Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of Type 2 diabetes. BMC Med. 2017;15(1):131. https://doi.org/10.1186/s12916-017-0901-x PMid:28720102 DOI: https://doi.org/10.1186/s12916-017-0901-x

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014 PMid:30634578 DOI: https://doi.org/10.3390/microorganisms7010014

King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One. 2019;14(9):e0206484. https://doi.org/10.1371/journal.pone.0206484 PMid:31509535 DOI: https://doi.org/10.1371/journal.pone.0206484

Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019;10:29. https://doi.org/10.3389/fendo.2019.00029 PMid:30761090 DOI: https://doi.org/10.3389/fendo.2019.00029

Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474. https://doi.org/10.3390/nu12051474 PMid:32438689 DOI: https://doi.org/10.3390/nu12051474

Al-Assal K, Martinez AC, Torrinhas RS, Cardinelli C, Waitzberg D. Gut microbiota and obesity. Clin Nutr Exp. 2018;20:60-4. https://doi.org/10.1016/j.yclnex.2018.03.001 PMid:26459447 DOI: https://doi.org/10.1016/j.yclnex.2018.03.001

Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with Type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. https://doi.org/10.1371/journal.pone.0009085 PMid:20140211 DOI: https://doi.org/10.1371/journal.pone.0009085

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108. https://doi.org/10.1371/journal.pone.0071108 PMid:24013136 DOI: https://doi.org/10.1371/journal.pone.0071108

Wang J, Li W, Wang C, Wang L, He T, Hu H, et al. Enterotype Bacteroides is associated with a high risk in patients with diabetes: A pilot study. J Diabetes Res. 2020;2020:6047145. https://doi.org/10.1155/2020/6047145 PMid:32064276 DOI: https://doi.org/10.1155/2020/6047145

Hung WC, Hung WW, Tsai HJ, Chang CC, Chiu YW, Hwang SJ, et al. The association of targeted gut microbiota with body composition in Type 2 diabetes mellitus. Int J Med Sci. 2021;18(2):511-9. https://doi.org/10.7150/ijms.51164 PMid:33390820 DOI: https://doi.org/10.7150/ijms.51164

Tsai HJ, Tsai WC, Hung WC, Hung WW, Chang CC, Dai CY, et al. Gut microbiota and subclinical cardiovascular disease in patients with Type 2 diabetes mellitus. Nutrients. 2021;13(8):2679. https://doi.org/10.3390/nu13082679 PMid:34444839 DOI: https://doi.org/10.3390/nu13082679

Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR, Aguilar RB. The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema. Diabetes Care. 2016;39(2):179-86. https://doi.org/10.2337/dc15-1585 PMid:26798148 DOI: https://doi.org/10.2337/dc15-1585

Fassatoui M, Lopez-Siles M, Díaz-Rizzolo DA, Jmel H, Naouali C, Abdessalem G, et al. Gut microbiota imbalances in Tunisian participants with Type 1 and Type 2 diabetes mellitus. Biosci Rep. 2019;39(6):BSR20182348. https://doi.org/10.1042/BSR20182348 PMid:31147456 DOI: https://doi.org/10.1042/BSR20182348

Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with Type 2 diabetes and its complications. Endocrine. 2019;66(3):526-37. https://doi.org/10.1007/s12020-019-02103-8 PMid:31591683 DOI: https://doi.org/10.1007/s12020-019-02103-8

Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozińska S, Ludwig-Słomczyńska AH, et al. Characteristics of gut microbiota in adult patients with Type 1 and Type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128(6):336-43. https://doi.org/10.20452/pamw.4246 PMid:29657308 DOI: https://doi.org/10.20452/pamw.4246

Montandon SA, Jornayvaz FR. Effects of antidiabetic drugs on gut microbiota composition. Genes. 2017;8(10):250. https://doi.org/10.3390/genes8100250 PMid:28973971 DOI: https://doi.org/10.3390/genes8100250

Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228-31. https://doi.org/10.1126/science.1179721 PMid:20203013 DOI: https://doi.org/10.1126/science.1179721

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-3. https://doi.org/10.1038/4441022a PMid:17183309 DOI: https://doi.org/10.1038/4441022a

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716-24.e2. https://doi.org/10.1053/j.gastro.2009.08.042 PMid:19706296 DOI: https://doi.org/10.1053/j.gastro.2009.08.042

Mamic P, Chaikijurajai T, Tang WH. Gut microbiome-a potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021;152:105-17. https://doi.org/10.1016/j.yjmcc.2020.12.001 PMid:33307092 DOI: https://doi.org/10.1016/j.yjmcc.2020.12.001

Yuzefpolskaya M, Bohn B, Nasiri M, Zuver AM, Onat DD, Royzman EA, et al. Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. J Heart Lung Transplant. 2020;39(9):880-90. https://doi.org/10.1016/j.healun.2020.02.004 PMid:32139154 DOI: https://doi.org/10.1016/j.healun.2020.02.004

Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099. https://doi.org/10.1371/journal.pone.0174099 PMid:28328981 DOI: https://doi.org/10.1371/journal.pone.0174099

Hamasaki-Matos AJ, Cóndor-Marín KM, Aquino-Ortega R, Carrillo-Ng H, Ugarte-Gil C, Silva-Caso W, et al. Characterization of the gut microbiota in diabetes mellitus II patients with adequate and inadequate metabolic control. BMC Res Notes. 2021;14(1):238. https://doi.org/10.1186/s13104-021-05655-z PMid:34167557 DOI: https://doi.org/10.1186/s13104-021-05655-z

Downloads

Published

2023-02-02

How to Cite

1.
Kusnadi Y, Saleh MI, Ali Z, Hermansyah H, Murti K, Hafy Z, Yuristo NSE. Firmicutes/Bacteroidetes Ratio of Gut Microbiota and Its Relationships with Clinical Parameters of Type 2 Diabetes Mellitus: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2023 Feb. 2 [cited 2024 Apr. 26];11(F):67-72. Available from: https://oamjms.eu/index.php/mjms/article/view/10478

Issue

Section

Systematic Review Article

Categories