Anti-aging Activity, In Silico Modeling and Molecular Docking from Sonneratia Caseolaris
DOI:
https://doi.org/10.3889/oamjms.2022.10558Keywords:
Anti-aging, Docking molecular, In-silico, In vitro, Sonneratia caseolarisAbstract
BACKGROUND: Anti-aging agents contribute to the prevention and control of skin photoaging. Antioxidant containing cosmetic has anti-aging therapy that can inhibit free radical formation. Sonneratia caseolaris leaf extract has robust antioxidant activity.
AIM: This study aimed to determine the anti-aging activity in-silico and in-vitro.
METHODS: In vitro antioxidant potential was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonate) cation (ABTS+) radical scavenging and FRAP. Investigation of in-silico docking activity was done for ROS (3ZBF), collagenase (966C), hyaluronidase (1FCV) receptors. Metabolomics analysis were conducted through HR-LCMS on the extract Sonneratia caseolaris. To explore the use value of antiaging, we analyzed the molecular docking of metabolites profiling Sonneratia caseolaris.
RESULTS: The result of metabolite profiling on the HR-LCMS from Sonneratia caseolaris extract are Luteolin, Betaine, and Choline. Molecular docking involves the exploration of protein or nucleotide, 3D structural modeling, and binding energy calculation. DPPH method showed IC50 28.214±0.809 ppm. The ABTS method showed IC50 1.528±0.042 ppm and FRAP is 345,125±4,196 mM/g sample. The compound luteolin had the Lowest binding energy scores with most of the target proteins: ROS (-8,3), collagenase (-11), and hyaluronidase (-6,8), according to molecular docking results.
CONCLUSION: It concluded that the study indicates extract Sonneratia caseolaris has the potential to be developed as a new drug for antiaging.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Sadhu SK, Ahmed F, Ohtsuki T, Ishibashi M. Flavonoids from Sonneratia caseolaris. J Nat Med. 2006;60(3):264-5. https://doi.org/10.1007/s11418-006-0029-3 PMid:29435876 DOI: https://doi.org/10.1007/s11418-006-0029-3
Arung ET, Kuspradini H, Kusuma IW, Bang TH, Yamashita S, Katakura Y, et al. Effects of isolated compound from Sonneratia caseolaris leaf: A validation of traditional utilization by melanin biosynthesis and antioxidant assays. J Appl Pharma Sci. 2015;5(10):39-43. https://doi.org/10.7324/JAPS.2015.501007 DOI: https://doi.org/10.7324/JAPS.2015.501007
Herwinda S, Amir M. Activities and Fraction Soneratia caseolaris Leaf Extract as antioxidants. Prosiding Seminar Nasional Kimia 2013. Bengaluru: Hindustan Aeronautics Limited; 2013. p. 164-169.
Wu SB, Wen Y, Li XW, Zhao Y, Zhao Z, Hu JF. Chemical constituents from the fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae). Biochem Syst Ecol. 2009;37(1):1-5. https://doi.org/10.1016/j.bse.2009.01.002 DOI: https://doi.org/10.1016/j.bse.2009.01.002
Syamsul ES, Supomo, Jubaidah, S. Sonneratia caseolaris leaf sunscreen cream formulation. Cirebon: Penerbit Pilar Pustaka Publishing; 2020.
Jadoon S, Karim S, Bin Asad MH, Akram MR, Khan AK, Malik A, et al. Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longev. 2015;2015:709628. https://doi.org/10.1155/2015/709628 PMid:26448818 DOI: https://doi.org/10.1155/2015/709628
Amelinda E, Widarta IW, Darmayanti LP. Activities and Fraction Soneratia caseolaris Leaf Extract as antioxidants. Prosiding Seminar Nasional Kimia 2013. Bengaluru: Hindustan Aeronautics Limited; 2013. p. 164-169.
Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46(10):4113-7. https://doi.org/10.1021/jf9801973 DOI: https://doi.org/10.1021/jf9801973
Magalhaes LM, Segundo MA, Reis S, Lima JL. Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1- picrylhydrazyl assay. Anal Chimica Acta. 2006;558(1-2):310-8. https://doi.org/10.1016/j.aca.2005.11.013 DOI: https://doi.org/10.1016/j.aca.2005.11.013
Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS, and Folin-ciocalteu methods. Food Res Int. 2011;44(1):217-24. https://doi.org/10.1016/j.foodres.2010.10.033 DOI: https://doi.org/10.1016/j.foodres.2010.10.033
Abu Bakar MF, Mohamed M, Rahmat A, Fry J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). J Food Chem. 2009;113(2):479-83. https://doi.org/10.1016/j.foodchem.2008.07.081 DOI: https://doi.org/10.1016/j.foodchem.2008.07.081
Cavasotto CN, editor. In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. Boca Raton: CRC Press; 2015. DOI: https://doi.org/10.1201/b18799
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-61. https://doi.org/10.1517/17460441.2015.1032936 PMid:25835573 DOI: https://doi.org/10.1517/17460441.2015.1032936
Sliwoski GR, Meiler J, dan Lowe EW. Computational methods in drug discovery prediction of protein structure and ensembles from limited experimental data view project antibody modeling, antibody design, and antigen-antibody interactions view project. Comput Methods Drug Discov. 2014;66(1):334-95. DOI: https://doi.org/10.1124/pr.112.007336
Winarti W, Raharja BS. Sudarno, antioxidant activity Sonneratia caseolaris leaves extract at different maturity stages. J Mar Coastal Sci. 2019;8(3):21163. https://doi.org/10.20473/jmcs.v8i3.21163 DOI: https://doi.org/10.20473/jmcs.v8i3.21163
Dan Muh HS, Amir MM. Activities and Fraction Soneratia caseolaris Leaf Extract as antioxidants. Prosiding Seminar Nasional Kimia 2013. Bengaluru: Hindustan Aeronautics Limited; 2013. p. 164-9.
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292 PMid:8660627 DOI: https://doi.org/10.1006/abio.1996.0292
Chun OK, Kim DO, Moon HY, Kang HG, Lee CY. Contribution of individual polyphenolics to the total antioxidant capacity of plums. J Agric Food Chem. 2003;51(25):7240-5. https://doi.org/10.1021/jf0343579 PMid:14640564 DOI: https://doi.org/10.1021/jf0343579
Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem. 2003;51(22):6509-15. https://doi.org/10.1021/jf0343074 PMid:14558771 DOI: https://doi.org/10.1021/jf0343074
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera: A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12. https://doi.org/10.1002/jcc.20084 DOI: https://doi.org/10.1002/jcc.20084
Zeng HJ, Yang R, You J, Qu LB, Sun YJ. Spectroscopic and docking studies on the binding of liquiritigenin with hyaluronidase for antiallergic mechanism. Scientifica (Cairo). 2016;2016:9178097. https://doi.org/10.1155/2016/9178097 PMid:27313960 DOI: https://doi.org/10.1155/2016/9178097
Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127 PMid:27247702 DOI: https://doi.org/10.1155/2016/3565127
Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin aging: A review. Int J Cosmet Sci. 2008;30(2):87-95. https://doi.org/10.1111/j.1468-2494.2007.00415.x PMid:18377617 DOI: https://doi.org/10.1111/j.1468-2494.2007.00415.x
Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K, et al. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med. 2014;14(1):133. https://doi.org/10.1186/1472-6882-14-133 DOI: https://doi.org/10.1186/1472-6882-14-133
Tsai ML, Huang HP, Hsu JD, Lai YR, Hsiao YP, Lu FJ, et al. Topical N-acetylcysteine accelerates wound healing in vitro and in vivo via the PKC/Stat3 pathway. Int J Mol Sci. 2014;15(5):7563-78. https://doi.org/10.3390/ijms15057563 PMid:24798751 DOI: https://doi.org/10.3390/ijms15057563
Choi MY, Song HS, Hur HS, Sim SS. Whitening activity of luteolin related to the inhibition of cAMP pathway in alpha-MSHstimulated B16 melanoma cells. Arch Pharmacol Res. 2008;31(9):1166-71. https://doi.org/10.1007/s12272-001-1284-4 PMid:18806960 DOI: https://doi.org/10.1007/s12272-001-1284-4
Kim YJ, Kang KS, Yokozawa T. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem Toxicol. 2008;46(7):2466-71. https://doi.org/10.1016/j.fct.2008.04.002 PMid:18482785 DOI: https://doi.org/10.1016/j.fct.2008.04.002
Downloads
Published
How to Cite
License
Copyright (c) 2022 Eka Siswanto Syamsul, Salman Umar, Fatma Sri Wahyuni, Ronny Martien, Dachriyanus Hamidi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0