Anti-NMDAR Encephalitis and Myasthenia Gravis Post-COVID-19 Vaccination: Cases of Possible COVID-19 Vaccination-Associated Autoimmunity

Authors

  • Astra Dea Simanungkalit Department of Neurology, Siloam Hospitals Lippo Village, Tangerang, Indonesia https://orcid.org/0000-0002-7314-772X
  • Vivien Puspitasari Department of Neurology, Siloam Hospitals Lippo Village, Tangerang, Indonesia https://orcid.org/0000-0002-3904-249X
  • Jacqueline Tasha Margono Department of Neurology, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia https://orcid.org/0000-0002-8366-4309
  • Pamela Tiffani Department of Neurology, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
  • Reza Stevano Department of Neurology, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia https://orcid.org/0000-0001-8210-5372

DOI:

https://doi.org/10.3889/oamjms.2022.10632

Keywords:

Anti-NMDAR encephalitis, Myasthenia gravis, COVID-19, Vaccination, Case report

Abstract

Abstract

 

BACKGROUND: Coronavirus disease 2019 (COVID‐19) continues to be a global issue. While immunizations comprise an important line of defense against it, adverse effects may occur. We report two cases of autoimmune conditions affecting the nervous system, anti-N-Methyl-D-Aspartate-receptor (NMDAR) encephalitis and myasthenia gravis (MG), that developed in close association following  COVID-19 vaccination.

CASE REPORT: In our first case, a 29-year-old woman presents with recurrent seizures, auditory hallucinations, psychiatric symptoms, and autonomic abnormalities, with an onset of one day after receiving the second dose of inactivated SARS-COV-2 whole virus vaccine. CSF analysis and electroencephalogram (EEG) was consistent with anti-NMDAR encephalitis.  In our second case, a 23-year-old woman presents with ocular ptosis, diplopia, hoarseness, and fatigability, which first appeared one-day after her first dose of inactivated SARS-COV-2 whole virus vaccine. Electromyography (EMG) results established a definitive diagnosis of MG.

CONCLUSION: To our knowledge, this is the first report of anti-NMDAR encephalitis and MG associated with inactivated SARS-COV-2 whole virus vaccine. In both cases, COVID-19 vaccination appears to be the only remarkable feature of history. The authors postulate that COVID-19 vaccination may trigger underlying defects or induce failure of positive and negative selection, which may lead to autoreactivity and subsequent autoimmunity. However, further studies are required to confirm this possibility.

 

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Arden MA, Chilcot J. Health Psychology and the coronavirus (COVID-19) global pandemic: A call for research. Br J Health Psychol. 2020;25(2):231-2. https://doi.org/10.1111/bjhp.12414 PMid:32227547 DOI: https://doi.org/10.1111/bjhp.12414

Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, et al. SARS-COV-2 (covid-19) vaccines structure, mechanisms and effectiveness: A Review. Int J Biol Macromol. 2021;188:740-50. https://doi.org/10.1016/j.ijbiomac.2021.08.076 PMid:34403674 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.076

Saeed BQ, Al-Shahrabi R, Alhaj SS, Alkokhardi ZM, Adrees AO. Side effects and perceptions following Sinopharm covid-19 vaccination. Int J Infect Dis. 2021;111:219-26. https://doi.org/10.1016/j.ijid.2021.08.013 PMid:34384899 DOI: https://doi.org/10.1016/j.ijid.2021.08.013

Burr T, Barton C, Doll E, Lakhotia A, Sweeney M. N-methyl-D-aspartate receptor encephalitis associated with COVID-19 infection in a toddler. Pediatr Neurol. 2021;114:75-6. https://doi.org/10.1016/j.pediatrneurol.2020.10.002 PMid:33246132 DOI: https://doi.org/10.1016/j.pediatrneurol.2020.10.002

Dalmau J, Armangué T, Planagumà J, Radosevic M, Mannara F, Leypoldt F, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models. Lancet Neurol. 2019;18(11):1045-57. https://doi.org/10.1016/s1474-4422(19)30244-3 PMid:31326280 DOI: https://doi.org/10.1016/S1474-4422(19)30244-3

Bravo GA, Torenta L. Anti-NMDA receptor encephalitis secondary to SARS-CoV-2 infection. Neurologia. 2020;35(9):669-700. https://doi.org/10.1016/j.nrleng.2020.07.011 PMid:32912742 DOI: https://doi.org/10.1016/j.nrleng.2020.07.011

Wang H. Anti-NMDA receptor encephalitis and vaccination. Int J Mol Sci. 2017;18(1):193. PMid:28106787 DOI: https://doi.org/10.3390/ijms18010193

Mann A, Lukas R, Grebenciucova E. Anti-N-methyl-D-aspartatereceptor encephalitis: Diagnosis, optimal management, and challenges. Ther Clin Risk Manag. 2014;10:517-25. https://doi.org/10.2147/tcrm.s61967 PMid:25061311 DOI: https://doi.org/10.2147/TCRM.S61967

Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 2013;12(2):157-65. https://doi.org/10.1016/s1474-4422(12)70310-1 PMid:23290630 DOI: https://doi.org/10.1016/S1474-4422(12)70310-1

Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJ. Myasthenia gravis. Nat Rev Dis Prim. 2019;5(1):30. https://doi.org/10.1038/s41572-019-0079-y PMid:31048702 DOI: https://doi.org/10.1038/s41572-019-0079-y

Karimi N, Okhovat AA, Ziaadini B, Ashtiani BH, Nafissi S, Fatehi F. Myasthenia gravis associated with novel coronavirus 2019 infection: A report of three cases. Clin Neurol Neurosurg. 2021;208:106834. https://doi.org/10.1016/j.clineuro.2021.106834 DOI: https://doi.org/10.1016/j.clineuro.2021.106834

Flannery P, Yang I, Keyvani M, Sakoulas G. Acute psychosis due to anti-n-methyl D-aspartate receptor encephalitis following COVID-19 vaccination: A case report. Front Neurol. 2021;12:764197. https://doi.org/10.3389/fneur.2021.764197 PMid:34803896 DOI: https://doi.org/10.3389/fneur.2021.764197

Chavez A, Pougnier C. A case of COVID-19 vaccine associated new diagnosis myasthenia gravis. J Primary Care Community Health. 2021;12:215013272110519. https://doi.org/10.1177/21501327211051933 PMid:34709075 DOI: https://doi.org/10.1177/21501327211051933

Kumar A, Meldgaard TS, Bertholet S. Novel platforms for the development of a universal influenza vaccine. Front Immunol. 2018;9:600. https://doi.org/10.3389/fimmu.2018.00600 PMid:29628926 DOI: https://doi.org/10.3389/fimmu.2018.00600

Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol. 2021;100:108162. https://doi.org/10.1016/j.intimp.2021.108162 PMid:34562844 DOI: https://doi.org/10.1016/j.intimp.2021.108162

Mascellino MT, di Timoteo F, de Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infect Drug Resist. 2021;14:3459-76. https://doi.org/10.2147/IDR.S315727 PMid:34511939 DOI: https://doi.org/10.2147/IDR.S315727

Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021;21:475-84. https://doi.org/10.1038/s41577-021-00578-z DOI: https://doi.org/10.1038/s41577-021-00578-z

Samanta D, Lui F. Anti-NMDA Receptor Encephalitis. Treasure Island, FL: StatPearls Publishing; 2022.

Makuch M, Wilson R, Al-Diwani A, Varley J, Kienzler AK, Taylor J, et al. N-methyl-D-aspartate receptor antibody production from germinal center reactions: Therapeutic implications. Ann Neurol. 2018;83(3):553-61. https://doi.org/10.1002/ana.25173 PMid:29406578 DOI: https://doi.org/10.1002/ana.25173

Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia gravis: Epidemiology, pathophysiology and clinical manifestations. J Clin Med. 2021;10(11):2235. https://doi.org/10.3390/jcm10112235 PMid:34064035 DOI: https://doi.org/10.3390/jcm10112235

Gilhus NE, Romi F, Hong Y, Skeie GO. Myasthenia gravis and infectious disease. J Neurol. 2018;265(6):1251-8. https://doi.org/10.1007/s00415-018-8751-9 PMid:29372387 DOI: https://doi.org/10.1007/s00415-018-8751-9

Prüss H. Autoantibodies in neurological disease. Nat Rev Immunol. 2021;21(12):798-813. https://doi.org/10.1038/s41577-021-00543-w PMid:33976421 DOI: https://doi.org/10.1038/s41577-021-00543-w

Fichtner ML, Jiang R, Bourke A, Nowak RJ, O’Connor KC. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol. 2020;11:776. https://doi.org/10.3389/fimmu.2020.00776 PMid:32547535 DOI: https://doi.org/10.3389/fimmu.2020.00776

Downloads

Published

2022-09-24

How to Cite

1.
Simanungkalit AD, Puspitasari V, Margono JT, Tiffani P, Stevano R. Anti-NMDAR Encephalitis and Myasthenia Gravis Post-COVID-19 Vaccination: Cases of Possible COVID-19 Vaccination-Associated Autoimmunity. Open Access Maced J Med Sci [Internet]. 2022 Sep. 24 [cited 2024 Dec. 3];10(C):280-4. Available from: https://oamjms.eu/index.php/mjms/article/view/10632

Issue

Section

Case Report in Internal Medicine

Categories