Mouthwashes and the Effect on the Viral Load of SARS-CoV-2 in Saliva: A Literature Review
DOI:
https://doi.org/10.3889/oamjms.2022.10662Keywords:
SARS-CoV-2, COVID-19, Mouthwash, SalivaAbstract
BACKGROUND: At present, several active ingredients have been investigated in mouthwashes having certain virucidal properties, which could reduce the viral load of SARS-CoV-2 to avoid contamination in medical or dental practice.
AIM: The objective of this review is to analyze the available evidence regarding mouthwashes and their effect on the salivary viral load of SARS-CoV-2.
METHODS: Records were retrieved from databases such as PubMed, Scopus, Web of Science, and Virtual Health Library up to June 21, 2022. Randomized or non-randomized clinical trials were included where saliva samples and laboratory or in vitro studies were used in the presence of saliva.
RESULTS: After a systematic selection process, 11 clinical studies that evaluated at least one mouthwash within clinical protocols and three laboratory studies that evaluated the virucidal efficacy against SARS-CoV-2 in the presence of saliva were finally included.
CONCLUSION: There are oral disinfectants with virucidal action in saliva samples, under clinical and laboratory conditions, capable of reducing the viral load of SARS-CoV-2. Cetylpyridinium chloride, chlorhexidine, and povidone-iodine present the best results so far. However, it was also possible to find active principles of recent appearance that, based on favorable exploratory results, needs further investigation on their efficacy and possible adverse events.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Deana NF, Seiffert A, Aravena-Rivas Y, Alonso-Coello P, Muñoz-Millán P, Espinoza-Espinoza G, et al. Recommendations for safe dental care: A systematic review of clinical practice guidelines in the first year of the COVID-19 pandemic. Int J Environ Res Public Health. 2021;18(19):10059. https://doi.org/10.3390/ijerph181910059 PMid:34639363 DOI: https://doi.org/10.3390/ijerph181910059
Salzberger B, Buder F, Lampl B, Ehrenstein B, Hitzenbichler F, Holzmann T, et al. Epidemiology of SARS-CoV-2. Infection. 2021;49(2):233-9. https://doi.org/10.1007/s15010-020-01531-3 PMid:33034020 DOI: https://doi.org/10.1007/s15010-020-01531-3
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, et al. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm. 2022;3(3):e157. https://doi.org/10.1002/mco2.157 PMid:35958432 DOI: https://doi.org/10.1002/mco2.157
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585 PMid:32031570 DOI: https://doi.org/10.1001/jama.2020.1585
Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, et al. Epidemiology of COVID-19: A systematic review and metaanalysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449-58. https://doi.org/10.1002/jmv.26424 PMid:32790106 DOI: https://doi.org/10.1002/jmv.26424
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019nCoV and controls in dental practice. Int J Oral Sci. 2020;12(1):9. https://doi.org/10.1038/s41368-020-0075-9 PMid:32127517 DOI: https://doi.org/10.1038/s41368-020-0075-9
Duś-Ilnicka I, Szczygielska A, Kuźniarski A, Szymczak A, Pawlik-Sobecka L, Radwan-Oczko M. SARS-CoV-2 IgG amongst dental workers during the COVID-19 pandemic. Int Dent J. 2022;72(3):353-9. https://doi.org/10.1016/j.identj.2022.02.003 PMid:35249702 DOI: https://doi.org/10.1016/j.identj.2022.02.003
Mezarina Mendoza JP, Trelles Ubillús BP, Salcedo Bolívar GT, Castañeda Palacios RD, Herrera Lopez PS, Padilla Rodríguez DA, et al. Antiviral effect of mouthwashes against SARS-COV-2: A systematic review. Saudi Dent J. 2022;34(3):167-93. https://doi.org/10.1016/j.sdentj.2022.01.006 PMid:35125835 DOI: https://doi.org/10.1016/j.sdentj.2022.01.006
Garcia-Sanchez A, Peña-Cardelles JF, Ruiz S, Robles F, Ordonez-Fernandez E, Salgado-Peralvo AO, et al. Efficacy of pre-procedural mouthwashes against SARS-CoV-2: A systematic review of randomized controlled trials. J Clin Med. 2022;11(6):1692. https://doi.org/10.3390/jcm11061692 PMid:35330016 DOI: https://doi.org/10.3390/jcm11061692
Zhang X, Geng P, Zhang T, Lu Q, Gao P, Mei J. Aceso: PICOguided evidence summarization on medical literature. IEEE J Biomed Health Inform. 2020;24:2663-2670 https://doi.org/10.1109/JBHI.2020.2984704 PMid:32275627 DOI: https://doi.org/10.1109/JBHI.2020.2984704
Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JI, Franssen GH, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies. BMJ Open. 2021;11(1):e044640. https://doi.org/10.1136/bmjopen-2020-044640 DOI: https://doi.org/10.1136/bmjopen-2020-044640
Silva J, Lucas C, Sundaram M, Israelow B, Wong P, Klein J, et al. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv. 2021;2021.01.04.21249236. https://doi.org/10.1101/2021.01.04.21249236 PMid:33442706 DOI: https://doi.org/10.1101/2021.01.04.21249236
Fakhruddin KS, Haiat A, Ngo HC, Panduwawala C, Chang JW, Samaranayake LP. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral positivity and their burden in saliva of asymptomatic carriers-a systematic review and meta-analysis. Acta Odontol Scand. 2022;80(3):182-90. https://doi.org/10.1080/00016357.2021.1977385 PMid:34689688 DOI: https://doi.org/10.1080/00016357.2021.1977385
Lee RA, Herigon JC, Benedetti A, Pollock NR, Denkinger CM. Performance of saliva, oropharyngeal swabs, and nasal swabs for sars-CoV-2 molecular detection: A systematic review and meta-analysis. J Clin Microbiol. 2021;59(5):e02881-20. https://doi.org/10.1128/JCM.02881-20 PMid:33504593 DOI: https://doi.org/10.1128/JCM.02881-20
Tonkaboni A, Amirzade-Iranaq MH, Ziaei H, Ather A. Impact of COVID-19 on dentistry. Adv Exp Med Biol. 2021;1318:623-36. https://doi.org/10.1007/978-3-030-63761-3_34 PMid:33973202 DOI: https://doi.org/10.1007/978-3-030-63761-3_34
Devlin H, Soltani P. COVID-19 and dentistry. Encyclopedia. 2021;1(2):496-504. https://doi.org/10.3390/encyclopedia1020041 DOI: https://doi.org/10.3390/encyclopedia1020041
Elzein R, Abdel-Sater F, Fakhreddine S, Hanna PA, Feghali R, Hamad H, et al. In vivo evaluation of the virucidal efficacy of chlorhexidine and povidone-iodine mouthwashes against salivary SARS-CoV-2. A randomized-controlled clinical trial. J Evid Based Dent Pract. 2021;21(3):101584. https://doi.org/10.1016/j.jebdp.2021.101584 PMid:34479668 DOI: https://doi.org/10.1016/j.jebdp.2021.101584
Seneviratne CJ, Balan P, Ko KK, Udawatte NS, Lai D, Ng DH, et al. Efficacy of commercial mouth-rinses on SARS-CoV-2 viral load in saliva: Randomized control trial in Singapore. Infection. 2021;49(2):305-11. https://doi.org/10.1007/s15010-020-01563-9 PMid:33315181 DOI: https://doi.org/10.1007/s15010-020-01563-9
Chaudhary P, Melkonyan A, Meethil A, Saraswat S, Hall DL, Cottle J, et al. Estimating salivary carriage of severe acute respiratory syndrome coronavirus 2 in nonsymptomatic people and efficacy of mouthrinse in reducing viral load: A randomized controlled trial. J Am Dent Assoc. 2021;152(11):903-8. https://doi.org/10.1016/j.adaj.2021.05.021 PMid:34561086 DOI: https://doi.org/10.1016/j.adaj.2021.05.021
Shet M, Westover J, Hong R, Igo D, Cataldo M, Bhaskar S. In vitro inactivation of SARS-CoV-2 using a povidone-iodine oral rinse. BMC Oral Health. 2022;22(1):47. https://doi.org/10.1186/s12903-022-02082-9 PMid:35216566 DOI: https://doi.org/10.1186/s12903-022-02082-9
McCarty EB, Soldatova L, Brant JA, Newman JG. Innovations in otorhinolaryngology in the age of COVID-19: A systematic literature review. World J Otorhinolaryngol Head Neck Surg. 2021; 8:1-15. https://doi.org/10.1016/j.wjorl.2021.01.001 PMid:33520334 DOI: https://doi.org/10.1016/j.wjorl.2021.01.001
Shet M, Hong R, Igo D, Cataldo M, Bhaskar S. In vitro evaluation of the virucidal activity of different povidone-iodine formulations against murine and human coronaviruses. Infect Dis Ther. 2021;10(4):2777-90. https://doi.org/10.1007/s40121-021-00536-1 PMid:34581973 DOI: https://doi.org/10.1007/s40121-021-00536-1
Khan MM, Parab SR. Tolerability and usability of 0.5% PVP-I gargles and nasal drops in 6692 patients: Observational study. Am J Otolaryngol. 2021;42(2):102880. https://doi.org/10.1016/j.amjoto.2020.102880 PMid:33440251 DOI: https://doi.org/10.1016/j.amjoto.2020.102880
Makhayeva DN, Filippov SK, Yestemes SS, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors with poly (2-ethyl-2- oxazoline) and poly (N-vinylpyrrolidone): Optical, hydrodynamic, thermodynamic, and antimicrobial properties. Eur Polym J. 2022;165(1):111005. https://doi.org/10.1016/j.eurpolymj.2022.111005 DOI: https://doi.org/10.1016/j.eurpolymj.2022.111005
Muñoz-Basagoiti J, Perez-Zsolt D, León R, Blanc V, Raïch-Regué D, Cano-Sarabia M, et al. Mouthwashes with CPC reduce the infectivity of SARS-CoV-2 variants in vitro. J Dent Res. 2021;100(11):1265-72. https://doi.org/10.1177/00220345211029269 PMid:34282982 DOI: https://doi.org/10.1177/00220345211029269
Anderson ER, Patterson EI, Richards S, Pitol AK, Edwards T, Wooding D, et al. CPC-containing oral rinses inactivate SARS-CoV-2 variants and are active in the presence of human saliva. J Med Microbiol. 2022;71(2):001508. https://doi.org/10.1099/jmm.0.001508 PMid:35180046 DOI: https://doi.org/10.1099/jmm.0.001508
de Paula Eduardo F, Corrêa L, Heller D, Daep CA, Benitez C, Malheiros Z, et al. Salivary SARS-CoV-2 load reduction with mouthwash use: A randomized pilot clinical trial. Heliyon. 2021;7(6):e07346. https://doi.org/10.1016/j.heliyon.2021.e07346 PMid:34189331 DOI: https://doi.org/10.1016/j.heliyon.2021.e07346
Alemany A, Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Ouchi D, Laporte-Villar C, et al. Cetylpyridinium chloride mouthwash to reduce shedding of infectious SARS-CoV-2: A double-blind randomized clinical trial. J Dent Res. 2022;101(12):1450-1456. https://doi.org/10.1177/00220345221102310 PMid:35727681 DOI: https://doi.org/10.1177/00220345221102310
Bañó-Polo M, Martínez-Gil L, Sánchez Del Pino MM, Massoli A, Mingarro I, Léon R, et al. Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. J Oral Microbiol. 2022;14(1):2030094. https://doi.org/10.1080/20002297.2022.2030094 PMid:35087641 DOI: https://doi.org/10.1080/20002297.2022.2030094
Langa GP, Muniz FW, Costa RD, da Silveira TM, Rösing CK. The effect of cetylpyridinium chloride mouthrinse as adjunct to toothbrushing compared to placebo on interproximal plaque and gingival inflammation-a systematic review with meta-analyses. Clin Oral Investig. 2021;25(2):745-57. https://doi.org/10.1007/s00784-020-03661-2 PMid:33185736 DOI: https://doi.org/10.1007/s00784-020-03661-2
Tadakamadla SK, Bharathwaj VV, Duraiswamy P, Sforza C, Tartaglia GM. Clinical efficacy of a new cetylpyridinium chloridehyaluronic acid-based mouthrinse compared to chlorhexidine and placebo mouthrinses-A 21-day randomized clinical trial. Int J Dent Hyg. 2020;18(1):116-23. https://doi.org/10.1111/idh.12413 PMid:31276312 DOI: https://doi.org/10.1111/idh.12413
Fernandez MD, Guedes MI, Langa GP, Rösing CK, Cavagni J, Muniz FW. Virucidal efficacy of chlorhexidine: A systematic review. Odontology. 2022;110(2):376-92. https://doi.org/10.1007/s10266-021-00660-x PMid:34637092 DOI: https://doi.org/10.1007/s10266-021-00660-x
Costa DD, Brites C, Vaz SN, de Santana DS, Dos Santos JN, Cury PR. Chlorhexidine mouthwash reduces the salivary viral load of SARS-CoV-2: A randomized clinical trial. Oral Dis. 2021; 1:1-9. https://doi.org/10.1111/odi.14086 PMid:34837305 DOI: https://doi.org/10.1111/odi.14086
Mileto D, Mancon A, Staurenghi F, Rizzo A, Econdi S, Gismondo MR, et al. Inactivation of SARSCoV-2 in the liquid phase: Are aqueous hydrogen peroxide and sodium per carbonate efficient decontamination agents? ACS Chem Health Saf. 2021;28(4):260-7. https://doi.org/10.1021/acs.chas.0c00095 DOI: https://doi.org/10.1021/acs.chas.0c00095
Guimarães TC, Marques BB, Castro MV, Secco DA, Porto LC, Tinoco JM, et al. Reducing the viral load of SARS-CoV-2 in the saliva of patients with COVID-19. Oral Dis. 2021; 7:1-7. https://doi.org/10.1111/odi.14118 PMid:34963033 DOI: https://doi.org/10.1111/odi.14118
Smeets R, Pfefferle S, Büttner H, Knobloch JK, Lütgehetmann M. Impact of oral rinsing with octenidine based solution on SARSCoV-2 loads in saliva of infected patients an exploratory study. Int J Environ Res Public Health. 2022;19(9):5582. https://doi.org/10.3390/ijerph19095582 PMid:35564977 DOI: https://doi.org/10.3390/ijerph19095582
Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, et al. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European standard EN 14476. J Hosp Infect. 2021;111:180-3. https://doi.org/10.1016/j.jhin.2021.01.031 PMid:33582201 DOI: https://doi.org/10.1016/j.jhin.2021.01.031
Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: A possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161-4. https://doi.org/10.23750/abm.v91i1.9402 PMid:32191676
Carrouel F, Valette M, Gadea E, Esparcieux A, Illes G, Langlois ME, et al. Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: A multicentre, randomized, double-blind controlled trial. Clin Microbiol Infect. 2021;27(10):1494-501. https://doi.org/10.1016/j.cmi.2021.05.028 PMid:34044151 DOI: https://doi.org/10.1016/j.cmi.2021.05.028
Braga SS, Barbosa JS, Santos NE, El-Saleh F, Paz FA. Cyclodextrins in antiviral therapeutics and vaccines. Pharmaceutics. 2021;13(3):409. https://doi.org/10.3390/pharmaceutics13030409 PMid:33808834 DOI: https://doi.org/10.3390/pharmaceutics13030409
Ommati MM, Mobasheri A, Heidari R. Drug-induced organ injury in coronavirus disease 2019 pharmacotherapy: Mechanisms and challenges in differential diagnosis and potential protective strategies. J Biochem Mol Toxicol. 2021;35(7):e22795. https://doi.org/10.1002/jbt.22795 DOI: https://doi.org/10.1002/jbt.22795
Yokoyama T, Nishimura T, Uwamino Y, Kosaki K, Furusaki K, Onishi R, et al. Virucidal effect of the mesoscopic structure of CAC-717 on severe acute respiratory syndrome Coronavirus-2. Microorganisms. 2021;9(10):2096. https://doi.org/10.3390/microorganisms9102096 PMid:34683417 DOI: https://doi.org/10.3390/microorganisms9102096
Gottsauner MJ, Michaelides I, Schmidt B, Scholz KJ, Buchalla W, Widbiller M, et al. A prospective clinical pilot study on the effects of a hydrogen peroxide mouthrinse on the intraoral viral load of SARS-CoV-2. Clin Oral Investig. 2020;24(10):3707-13. https://doi.org/10.1007/s00784-020-03549-1 PMid:32876748 DOI: https://doi.org/10.1007/s00784-020-03549-1
Ferrer MD, Barrueco ÁS, Martinez-Beneyto Y, Mateos-Moreno MV, Ausina-Márquez V, García-Vázquez E, et al. Clinical evaluation of antiseptic mouth rinses to reduce salivary load of SARS-CoV-2. Sci Rep. 2021;11(1):24392. https://doi.org/10.1038/s41598-021-03461-y PMid:34937855 DOI: https://doi.org/10.1038/s41598-021-03461-y
Teagle V, Clem DS, Yoon T. Virucidal properties of molecular iodine oral rinse against SARS-CoV-2. Compend Contin Educ Dent. 2022;43(2):e13-6. PMid:35148480
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Mariano Ortiz Pizarro, Christian R. Mejia, David R. Rodríguez-Díaz, Ygnacio Moreno Herrera, Alexander Bustamante Cabrejo, Victor Serna-Alarcon (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0