Correspondence of Meningioma Orbital Grading and Clinicopathological Features among Indonesian Patients
DOI:
https://doi.org/10.3889/oamjms.2022.10674Keywords:
Orbital meningioma, Grading, Papillary atrophy, Visual acuity, HyperostosisAbstract
BACKGROUND: Orbital meningiomas can cause visual disturbances, protrusion of the eyes, double vision, and optic nerve abnormalities that significantly decrease vision and eventually lead to blindness. To the best of our knowledge, data on the incidence and pathogenesis of orbital meningioma in Indonesia are non-existent.
AIM: This study aimed to analyze the clinicopathological relationship with orbital meningioma grading.
METHODS: It is a cross-sectional observational analysis on 44 orbital meningioma patients in Dr. Hasan Sadikin General Hospital and the National Eye Center, Cicendo Eye Hospital in 2017–2020. Chi-square analysis and logistic regression with statistical significance (p < 0.05) were engaged in the method.
RESULTS: Orbital meningioma mostly occurred in women aged 30–44 years. Meningioma Grade I was dominated by meningothelial meningioma found in 14 (31.8%) patients, Grade II was atypical meningioma in 9 (20.9%) patients, and Grade III was anaplastic meningioma in 3 patients (6.8%). Clinical symptoms in the form of papillary atrophy (p = 0.046), visual acuity (p = 0.026), proptosis (p = 0.029), and hyperostosis (p = 0.024) were statistically significant and there was a significant difference between Grade I, Grade II, and Grade III using the Chi-square test. Logistic regression results showed that hyperostosis is significantly related to grading the orbital meningioma (p = 0.044) with an odds ratio of 0.206 (IK95% 0.04–0.955).
CONCLUSION: Hyperostosis increases the grading of the orbital meningioma because it is related to the invasion of the tumor into the orbital bone and is a neoplastic process. The presence of hyperostosis which is more common in Grade III meningiomas can be used as one of the most important predictors of meningioma recurrence postoperatively. Nonetheless, our data add to the existing literature the potential points of anti-invasive adjuvant therapy attacks.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Ho CY, Mosier S, Safneck J, Salomao DR, Miller NR, Eberhart CG, et al. Genetic profiling by single-nucleotide polymorphism-based array analysis defines three distinct subtypes of orbital meningioma. Brain Pathol. 2015;25(2):193-201. https://doi.org/10.1111/bpa.12150 PMid:24773246 DOI: https://doi.org/10.1111/bpa.12150
Sughrue ME, Sanai N, Shangari G, Parsa AT, Berger MS, McDermott MW. Outcome and survival following primary and repeat surgery for world health organization Grade III meningiomas: Clinical article. J Neurosurg. 2010;113(2):202-9. https://doi.org/10.3171/2010.1.JNS091114 PMid:20225922 DOI: https://doi.org/10.3171/2010.1.JNS091114
Korhonen K, Auvinen A, Lyytinen H, Ylikorkala O, Pukkala E. A nationwide cohort study on the incidence of meningioma in women using postmenopausal hormone therapy in Finland. Am J Epidemiol. 2012;175(4):309-14. https://doi.org/10.1093/aje/kwr335 PMid:22287638 DOI: https://doi.org/10.1093/aje/kwr335
Garcia GA, Choy AE, Hasso AN, Minckler DS. Malignant orbital meningioma originating from the frontal lobe. Ocul Oncol Pathol. 2018;4(3):186-90. https://doi.org/10.1159/000481509 PMid:29765952 DOI: https://doi.org/10.1159/000481509
Ongaratti BR, Silva CB, Trott G, Haag T, Leães CG, Ferreira NP, et al. Expression of merlin, NDRG2, ERBB2, and c-MYC in meningiomas: Relationship with tumor grade and recurrence. Braz J Med Biol Res. 2016;49(4):e5125. https://doi.org/10.1590/1414-431X20155125 PMid:27007654 DOI: https://doi.org/10.1590/1414-431X20155125
Custer B, Longstreth JT, Phillips LE, Koepsell TD, Van Belle G. Hormonal exposures and the risk of intracranial meningioma in women: A population-based case-control study. BMC Cancer. 2006;6:152. https://doi.org/10.1186/1471-2407-6-152 PMid:16759391 DOI: https://doi.org/10.1186/1471-2407-6-152
Qi ZY, Shao C, Huang YL, Hui GZ, Zhou YX, Wang Z. Reproductive and exogenous hormone factors in relation to risk of meningioma in women: A meta-analysis. PLoS One. 2013;8(12):e83261. https://doi.org/10.1371/journal.pone.0083261 PMid:24386167 DOI: https://doi.org/10.1371/journal.pone.0083261
Schneider B, Pülhorn H, Röhrig B, Rainov NG. Predisposing conditions and risk factors for development of symptomatic meningioma in adults. Cancer Detect Prev. 2005;29(5):440-7. https://doi.org/10.1016/j.cdp.2005.07.002 PMid:16188400 DOI: https://doi.org/10.1016/j.cdp.2005.07.002
Edlinger M, Strohmaier S, Jonsson H, Bjørge T, Manjer J, Borena WT, et al. Blood pressure and other metabolic syndrome factors and risk of brain tumour in the large population-based Me-Can cohort study. J Hypertens. 2012;30(2):290-6. https://doi.org/10.1097/HJH.0b013e32834e9176 PMid:22179083 DOI: https://doi.org/10.1097/HJH.0b013e32834e9176
Seliger C, Meier CR, Becker C, Jick SS, Proescholdt M, Bogdahn U, et al. Diabetes, use of metformin, and the risk of meningioma. PLoS One. 2017;12(7):e0181089. https://doi.org/10.1371/journal.pone.0181089 PMid:28708856 DOI: https://doi.org/10.1371/journal.pone.0181089
Phillips LE, Koepsell TD, Van Belle G, Kukull WA, Gehrels JA, Longstreth WT Jr. History of head trauma and risk of intracranial meningioma: Population-based case-control study. Neurology. 2002;58(12):1849-52. https://doi.org/10.1212/wnl.58.12.1849 PMid:12084890 DOI: https://doi.org/10.1212/WNL.58.12.1849
Cea-Soriano L, Blenk T, Wallander MA, Rodríguez LA. Hormonal therapies and meningioma: Is there a link? Cancer Epidemiol. 2012;36(2):198-205. https://doi.org/10.1016/j.canep.2011.08.003 PMid:21943794 DOI: https://doi.org/10.1016/j.canep.2011.08.003
Desai PB, Patel D. A study of meningioma in relation to age, sex, site, symptoms, and computerized tomography scan features. Int J Med Sci Public Health. 2016;5(2):331-4. https://doi.org/10.5455/ijmsph.2016.06102015124 DOI: https://doi.org/10.5455/ijmsph.2016.06102015124
Kim M, Lee DH, Rn HJ, Cho YH, Kim JH, Kwon DH. Analysis of the results of recurrent intracranial meningiomas treated with re-radiosurgery. Clin Neurol Neurosurg. 2017;153:93-101. https://doi.org/10.1016/j.clineuro.2016.12.014 PMid:28081463 DOI: https://doi.org/10.1016/j.clineuro.2016.12.014
Fischer BR, Brokinkel B. Surgical management of skull base meningiomas-an Overview. In: Meningiomas-Management and Surgery. London: Intechopen; 2012.
Csonka T, Murnyák B, Szepesi R, Kurucz A, Klekner Á, Hortobágyi T. Poly(ADP-ribose) polymerase-1 (PARP1) and p53 labelling index correlates with tumour gra de in meningiomas. Folia Neuropathol. 2014;52(2):111-20. https://doi.org/10.5114/fn.2014.43782 PMid:25118896 DOI: https://doi.org/10.5114/fn.2014.43782
Csonka T, Murnyák B, Szepesi R, Bencze J, Bognár L, Klekner Á, et al. Assessment of candidate immunohistochemical prognostic markers of meningioma recurrence. Folia Neuropathol. 2016;54(2):114-26. https://doi.org/10.5114/fn.2016.60088 PMid:27543769 DOI: https://doi.org/10.5114/fn.2016.60088
Marciscano AE, Stemmer-Rachamimov AO, Niemierko A, Larvie M, Curry WT, Barker FG, et al. Benign meningiomas (WHO Grade I) with atypical histological features: Correlation of histopathological features with clinical outcomes. J Neurosurg. 2016;124(1):106-14. https://doi.org/10.3171/2015.1.JNS142228 PMid:26274991 DOI: https://doi.org/10.3171/2015.1.JNS142228
Mubeen B, Makhdoomi R, Nayil K, Rafiq D, Kirmani A, Salim O, et al. Clinicopathological characteristics of meningiomas: Experience from a tertiary care hospital in the Kashmir Valley. Asian J Neurosurg. 2019;14(1):41-6. https://doi.org/10.4103/ajns.AJNS_228_16 PMid:30937006 DOI: https://doi.org/10.4103/ajns.AJNS_228_16
Jha R, Bista P. Clinicopathological characteristics of intracranial meningiomas. Nepal J Neurosci. 2020;17(2):16-25. https://doi.org/10.3126/njn.v17i2.30181 DOI: https://doi.org/10.3126/njn.v17i2.30181
Toopalli K, Vallury S, Pandharpurkar M, Ather M. Intraorbital meningiomas : A histopahologic study. Scholars J Appl Med Sci. 2015;3(2B):623-6.
Supartoto A, Sasongko MB, Respatika D, Mahayana IT, Pawiroranu S, Kusnanto H, et al. Relationships between neurofibromatosis-2, progesterone receptor expression, the use of exogenous progesterone, and risk of orbitocranial meningioma in females. Front Oncol. 2019;8:651. https://doi.org/10.3389/fonc.2018.00651 PMid:30687635 DOI: https://doi.org/10.3389/fonc.2018.00651
Boulos PT, Dumont AS, Mandell JW, Jane JA Sr. Meningiomas of the orbit: Contemporary considerations. Neurosurg Focus. 2001;10(5):E5. https://doi.org/10.3171/foc.2001.10.5.6 PMid:16724828 DOI: https://doi.org/10.3171/foc.2001.10.5.6
Kuan AS, Chen YT, Teng CJ, Wang SJ, Chen MT. Risk of meningioma in patients with head injury: A nationwide population-based study. J Chinese Med Assoc. 2014;77(9):457-62. https://doi.org/10.1016/j.jcma.2014.06.005 PMid:25088906 DOI: https://doi.org/10.1016/j.jcma.2014.06.005
Schneider M, Potthoff AL, Borger V, Hadjiathanasiou A, Schäfer N, Güresir Á, et al. Outcome of tumor-associated proptosis in patients with spheno-orbital meningioma: Single-center experience and systematic review of the literature. Front Oncol. 2020;10:574074. https://doi.org/10.3389/fonc.2020.574074 PMid:33117710 DOI: https://doi.org/10.3389/fonc.2020.574074
Supartoto A, Mahayana IT, Christine RN. Exposure to exogenous female sex hormones is associated with increased risk of orbito-cranial meningioma in females: A case-control study. Int J Ophthalmic Pathol. 2016;5(3): 1-6. https://doi.org/10.4172/2324-8599.1000183 DOI: https://doi.org/10.4172/2324-8599.1000183
Menon S, Sandesh O, Anand D, Menon G. Spheno-orbital meningiomas: Optimizing visual outcome. J Neurosci Rural Pract. 2020;11(3):385-94. https://doi.org/10.1055/s-0040-1709270 PMid:32753802 DOI: https://doi.org/10.1055/s-0040-1709270
Elborady MA, Nazim WM. Spheno-orbital meningiomas: Surgical techniques and results. Egypt J Neurol Psychiatry Neurosurg. 2021;57(1):18. https://doi.org/10.1186/s41983-021-00276-6 DOI: https://doi.org/10.1186/s41983-021-00276-6
Assi HI, Hilal L, Abu-Gheida I, Berro J, Sukhon F, Skaf G, et al. Demographics and outcomes of meningioma patients treated at a tertiary care center in the Middle East. Clin Neurol Neurosurg. 2020;195:105846. https://doi.org/10.1016/j.clineuro.2020.105846 PMid:32334046 DOI: https://doi.org/10.1016/j.clineuro.2020.105846
Aman RA, Keswani RR, Ichwwan S, Ashari S, Nugroho SW. Post operative outcome of sphenoorbital meningioma: Evaluation on visual acuity and propotosis index Post operative outcome of sphenoorbital meningioma: Evaluation on visual acuity and propotosis index. Neurona. 2020;37(4):238-41.
Abdulqader SB, Almujaiwel N, Alshakweer W, Alzhrani G. High-grade spheno-orbital meningioma in patients with systemic lupus erythematosus: Two case reports and literature review. Surg Neurol Int. 2020;11:367. https://doi.org/10.25259/SNI_583_2020 PMid:33194300 DOI: https://doi.org/10.25259/SNI_583_2020
Guadarrama-Ortíz P, De Oca-Vargas IM, Choreño-Parra JA, Gallegos-Garza C, Sánchez-Garibay C, Garibay-Gracián A, et al. Expression of IL-6 and matrix metalloproteinases in a convexity meningiomas with hyperostosis: Case report. Interdiscip Neurosurg. 2022;2:101374. https://doi.org/10.1016/j.inat.2021.101374 DOI: https://doi.org/10.1016/j.inat.2021.101374
Efendioglu M, Basaran R, Bayrak OF, Isik N, Kaner T, Sahin F, et al. The role of a single nucleotide polymorphism of the matrix metalloproteinase-1 gene promoter region in invasion and prognosis of meningiomas. Turk Neurosurg. 2014;24(5):731-6. https://doi.org/10.5137/1019-5149.JTN.9823-13.1 PMid:25269045 DOI: https://doi.org/10.5137/1019-5149.JTN.9823-13.1
Coven Ý, Ozer O, Ozen O, Şahin FI, Altinors N. Presence of matrix metalloproteinase-2 and tissue inhibitor matrix metalloproteinase-2 gene polymorphisms and immunohistochemical expressions in intracranial meningiomas. J Neurosurg. 2014;121(6):1478-82. https://doi.org/10.3171/2014.8.JNS13515 PMid:25259564 DOI: https://doi.org/10.3171/2014.8.JNS13515
Reszec J, Hermanowicz A, Rutkowski R, Turek G, Mariak Z, Chyczewski L. Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. Biomed Res Int. 2015;2015:646853. https://doi.org/10.1155/2015/646853 PMid:25821815 DOI: https://doi.org/10.1155/2015/646853
Garcia-Ruíz G, Flores-Espinosa P, Preciado-Martínez E, Bermejo-Martínez L, Espejel-Nuñez A, Estrada-Gutierrez G, et al. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta. Reprod Biol Endocrinol. 2015;13:115. https://doi.org/10.1186/s12958-015-0111-3 PMid:26446923 DOI: https://doi.org/10.1186/s12958-015-0111-3
Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem. 2017;41(4):1360-9. https://doi.org/10.1159/000465455 PMid:28278513 DOI: https://doi.org/10.1159/000465455
Downloads
Published
How to Cite
License
Copyright (c) 2022 Raudatul Janah, Lantip Rujito, Daniel Joko Wahyono (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0