Chitosan as Bone Scaffold for Craniofacial Bone Regeneration: A Systematic Review

Authors

  • I Gusti Putu Hendra Sanjaya Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Udayana University, Sanglah General Hospital, Bali, Indonesia
  • Sri Maliawan Department of Neurosurgery, Faculty of Medicine, Udayana University, Sanglah General Hospital, Bali, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.10684

Keywords:

Craniofacial defect, Bone regeneration, Chitosan, Scaffold

Abstract

Background: The reconstruction of bone defect in the face and head is indispensable yet one of the most challenging procedure to date. Chitosan has emerged as a promising low-cost natural biopolymer for the bone scaffold as an alternative to surgery. This study aims to review the effectiveness of chitosan as a bone scaffold for craniofacial bone regeneration.

Methods: This systematic review used Google Scholar and PubMed as database sources. Study selection using PRISMA diagram and Boolean operator to specify the study search. The quality assessment of the study used a checklist from Joanna Briggs Institute for experimental study.

Result: We included 18 experimental studies, both in vivo and in vitro study—the in vivo study used animal subjects such as mice, goats and rabbits. The studies mostly used chitosan combined with other biomaterials such as demineralized bone matrix (DBM), genipin (GP), sodium alginate (SA), resveratrol (Res), polycaprolactone (PCL) and collagen, growth factor and stem cells such as bone morphogenic protein-2 (BMP-2), dental pulp stem cell (DPSC), and human umbilical cord mesenchymal stem cells (hUCMSC).

Conclusion: Chitosan is a natural polymer with promising osteoconductive, osteoinductive and osteo-integrative effects in bone regeneration. Chitosan utilization for bone scaffolds combined with other biomaterials, growth factors, or stem cells gives better bone regeneration results than chitosan alone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biography

I Gusti Putu Hendra Sanjaya, Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Udayana University, Sanglah General Hospital, Bali, Indonesia

Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Udayana University, Sanglah General Hospital, Bali, Indonesia

References

Khazaal H, Helman J. Narrative review: Craniofacial bone regeneration-where are we now? Front Oral Maxillofac Med. 2022;4:9. https://doi.org/10.21037/fomm-21-9 DOI: https://doi.org/10.21037/fomm-21-9

Ghosh R, Gopalkrishnan K. Facial fractures. J Craniofac Surg. 2018;29(4):e334-40. https://doi.org/10.1097/SCS.0000000000004269 PMid:29381610 DOI: https://doi.org/10.1097/SCS.0000000000004269

Wiargitha IK, Wiradana AA. Patterns of fracture site and management of maxillofacial trauma cases in the Department of Trauma and Acute Care Surgery in Sanglah general hospital. JBN Jurnal Bedah Nasional. 2019;3(2):50. https://doi.org/10.24843/JBN.2019.v03.i02.p05 DOI: https://doi.org/10.24843/JBN.2019.v03.i02.p05

Pandini FE, Kubo FM, Plepis AM, Martins VD, da Cunha MR, Silva VR, et al. In vivo study of nasal bone reconstruction with collagen, elastin and chitosan membranes in abstainer and alcoholic rats. Polymers (Basel). 2022;14(1):188. https://doi.org/10.3390/polym14010188 PMid:35012210 DOI: https://doi.org/10.3390/polym14010188

Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018;6(2):90-9. PMid:29600260

Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin North Am. 2017;61(4):835-56. https://doi.org/10.1016/j.cden.2017.06.003 PMid:28886771 DOI: https://doi.org/10.1016/j.cden.2017.06.003

Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a bone scaffold biomaterial. J Craniofac Surg. 2018;29(7):1788-93. https://doi.org/10.1097/SCS.0000000000004909 PMid:30157141 DOI: https://doi.org/10.1097/SCS.0000000000004909

Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydr Polym. 2017;166:236-48. https://doi.org/10.1016/j.carbpol.2017.02.087 PMid:28385228 DOI: https://doi.org/10.1016/j.carbpol.2017.02.087

Bakopoulou A, Georgopoulou Α, Grivas I, Bekiari C, Prymak O, Loza Κ, et al. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater. 2019;35(2):310-27. https://doi.org/10.1016/j.dental.2018.11.025 PMid:30527589 DOI: https://doi.org/10.1016/j.dental.2018.11.025

Bangun K, Sukasah CL, Dilogo IH, Indrani DJ, Siregar NC, Pandelaki J, et al. Bone growth capacity of human umbilical cord mesenchymal stem cells and BMP-2 seeded into hydroxyapatite/chitosan/gelatin scaffold in alveolar cleft defects: An experimental study in goat. Cleft Palate Craniofac. 2021;58(6):707-17. https://doi.org/10.1177/1055665620962360 PMid:34047209 DOI: https://doi.org/10.1177/1055665620962360

Hu X, Zheng S, Zhang R, Wang Y, Jiao Z, Li W, et al. Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. Biomater Adv. 2022;133:112662. https://doi.org/10.1016/j.msec.2022.112662 PMid:35074237 DOI: https://doi.org/10.1016/j.msec.2022.112662

Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater. 2021;16(6):65030. https://doi.org/10.1088/1748-605X/ac2e17 PMid:34624878 DOI: https://doi.org/10.1088/1748-605X/ac2e17

Gani A, Yulianty R, Supiaty S, Rusdy M, Asri GD, Satya DE, et al. Effectiveness of combination of chitosan gel and hydroxyapatite from crabs shells (Portunus pelagicus) waste as bonegraft on periodontal network regeneration through IL-1 and BMP-2 analysis. Int J Biomater. 2022;2022:1817236. https://doi.org/10.1155/2022/1817236 PMid:35356491 DOI: https://doi.org/10.1155/2022/1817236

Gao H, Ge K, Xu Y, Wang Y, Lu M, Wei Y, et al. Controlled release of minocycline in hydroxyapatite/chitosan composite for periodontal bone defect repair. Dent Mater J. 2022;41(3):346-52. https://doi.org/10.4012/dmj.2021-217 PMid:35321974 DOI: https://doi.org/10.4012/dmj.2021-217

Kazimierczak P, Palka K, Przekora A. Development and optimization of the novel fabrication method of highly macroporous chitosan/agarose/nanohydroxyapatite bone scaffold for potential regenerative medicine applications. Biomolecules. 2019;9(9):434. https://doi.org/10.3390/biom9090434 PMid:31480579 DOI: https://doi.org/10.3390/biom9090434

Kazimierczak P, Vivcharenko V, Truszkiewicz W, Wójcik M, Przekora A. Osteoblasts response to novel chitosan/agarose/hydroxyapatite bone scaffold-studies on MC3T3-E1 and hFOB 1.19 cellular models. Eng Biomater. 2019;22(151):24-9.

Kazimierczak P, Koziol M, Przekora A. The chitosan/agarose/nanoha bone scaffold-induced M2 macrophage polarization and its effect on osteogenic differentiation in vitro. Int J Mol Sci. 2021;22(3):1109. https://doi.org/10.3390/ijms22031109 PMid:33498630 DOI: https://doi.org/10.3390/ijms22031109

Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, et al. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater. 2021;6(5):1255-66. https://doi.org/10.1016/j.bioactmat.2020.10.018 PMid:33210023 DOI: https://doi.org/10.1016/j.bioactmat.2020.10.018

Liu D, Liu Z, Zou J, Li L, Sui X, Wang B, et al. Synthesis and characterization of a hydroxyapatite-sodium alginate-chitosan scaffold for bone regeneration. Front Mater. 2021;8:648980. https://doi.org/10.3389/fmats.2021.648980 DOI: https://doi.org/10.3389/fmats.2021.648980

Murali VP, Guerra FD, Ghadri N, Christian JM, Stein SH, Jennings JA, et al. Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing. J Periodontal Res. 2021;56(5):877-84. https://doi.org/10.1111/jre.12883 PMid:33830521 DOI: https://doi.org/10.1111/jre.12883

Ren X, Chen C, Hou Y, Huang M, Li Y, Wang D, et al. Biodegradable chitosan-based composites with dual functions acting as the bone scaffold and the inflammation inhibitor in the treatment of bone defects. Int J Polym Mater Polym Biomater. 2018;67(12):703-10. https://doi.org/10.1080/00914037.2017.1376196 DOI: https://doi.org/10.1080/00914037.2017.1376196

Xu H, Zou X, Xia P, Huang H, Liu F, Ramesh T. Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomed Mater. 2021;16(4):045006. https://doi.org/10.1088/1748-605X/abe8ac PMid:33618343 DOI: https://doi.org/10.1088/1748-605X/abe8ac

Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B Appl Biomater. 2018;106(2):863-73. https://doi.org/10.1002/jbm.b.33900 PMid:28419693 DOI: https://doi.org/10.1002/jbm.b.33900

Chen IH, Lee TM, Huang CL. Biopolymers hybrid particles used in dentistry. Gels. 2021;7(1):31. https://doi.org/10.3390/gels7010031 PMid:33809903 DOI: https://doi.org/10.3390/gels7010031

Nie L, Deng Y, Li P, Hou R, Shavandi A, Yang S. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega. 2020;5(19):10948-57. https://doi.org/10.1021/acsomega.0c00727 DOI: https://doi.org/10.1021/acsomega.0c00727

Rodríguez-Méndez I, Fernández-Gutiérrez M, Rodríguez-Navarrete A, Rosales-Ibáñez R, Benito-Garzón L, Vázquez-Lasa B, et al. Bioactive Sr(II)/chitosan/poly(ε- caprolactone) scaffolds for craniofacial tissue regeneration. In vitro and in vivo behavior. Polymers (Basel). 2018;10(3):279. https://doi.org/10.3390/polym10030279 PMid:30966314 DOI: https://doi.org/10.3390/polym10030279

Kowalczyk P, Podgórski R, Wojasiński M, Gut G, Bojar W, Ciach T. Chitosan-human bone composite granulates for guided bone regeneration. Int J Mol Sci. 2021;22(5):2324. https://doi.org/10.3390/ijms22052324 PMid:33652598 DOI: https://doi.org/10.3390/ijms22052324

Hammouda HF, Farag MM, El Deftar MM, Abdel-Gabbar M, Mohamed BM. Effect of Ce-doped bioactive glass/collagen/ chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol. 2022;20(1):33. https://doi.org/10.1186/s43141-022-00302-x PMid:35192077 DOI: https://doi.org/10.1186/s43141-022-00302-x

Downloads

Published

2022-10-30

How to Cite

1.
Sanjaya IGPH, Maliawan S. Chitosan as Bone Scaffold for Craniofacial Bone Regeneration: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2022 Oct. 30 [cited 2024 Apr. 26];10(F):773-9. Available from: https://oamjms.eu/index.php/mjms/article/view/10684

Issue

Section

Systematic Review Article

Categories

Most read articles by the same author(s)

1 2 > >>