Pharmacocorrection of Disturbances in the NO System in Experimental Chronic Generalized Periodontitis
DOI:
https://doi.org/10.3889/oamjms.2023.10717Keywords:
Periodontal tissues, Thiotriazoline, L-arginine, Nitroxidergic system, Tiazotic acid, Antioxidant activityAbstract
BACKGROUND: In the light of modern views on the pathogenesis of inflammatory diseases of the oral cavity, a promising direction is the use of agents with metabolitotropic, endothelioprotective, and especially with antioxidant action.
AIM: The purpose of this study was to evaluate the effect of a combination of thiotriazoline and L-arginine (1:4) on the parameters of the nitroxidergic system of the blood and periodontium of rats with experimental chronic generalized periodontitis and substantiate further study of this combination.
METHODS: Real-time reverse-transcription polymerase chain reaction was used to assess the mRNA expression status of iNOS and nNOS mRNAs. The total content of reduced thiols was also determined by the reaction with Elman’s reagent.
RESULTS: We found an increase in the total activity of NOS by 90.01% due to an increase in the expression of iNOS, while a decrease in the expression of its endothelial form was observed (a decrease in the expression of eNOS mRNA by 74.3%) compared with the intact group. An increase in iNOS activity led to an increase in the production of NO, which, under conditions of antioxidant deficiency, is converted into cytotoxic forms (peroxynitrite and nitrosonium ion).
CONCLUSIONS: The course administration of Mexidol (250 mg/kg) and, especially, the combination of thiotriazoline and L-arginine (1:4) (200 mg/kg) to animals with CGP, leads to a decrease in the gingival pocket to 6 mm (Mexidol) and to 4 mm against the background almost complete absence of bleeding, swelling, and tooth mobility (combination), and also led to a decrease in iNOS mRNA expression by 65.6% (p < 0.05).
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3(1):17038. https://doi.org/10.1038/nrdp.2017.38 PMid:28805207 DOI: https://doi.org/10.1038/nrdp.2017.38
Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:910. https://doi.org/10.3389/fphys.2017.00910 PMid:29180965 DOI: https://doi.org/10.3389/fphys.2017.00910
Garazha SN, Grishilova EN, Garazha IS, Nekrasova EF, Hubaeva FS, Il’ina EE, et al. Etiopathogenetic methods of treating patients with chronic inflammatory-destructive periodontal diseases. Russ J Dent. 2020;24(5):332-6. https://doi.org.10.17816/1728-2802-2020-24-5-332-336 DOI: https://doi.org/10.17816/1728-2802-2020-24-5-332-336
Anil S, Alyafei SH, George AK, Chalisserry EP. Adverse effects of medications on periodontal tissues. In: Oral Diseases. London: IntechOpen; 2020. DOI: https://doi.org/10.5772/intechopen.92166
Pignatelli P, Fabietti G, Ricci A, Piattelli A, Curia MC. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21(20):7538. https://doi.org/10.3390/ijms21207538 PMid:33066082 DOI: https://doi.org/10.3390/ijms21207538
Ongphichetmetha N, Lertpimonchai A, Champaiboon C. Bioactive glass and arginine dentifrices immediately relieved dentine hypersensitivity following non‐surgical periodontal therapy: A randomized controlled trial. J Periodontol. 2022;93(2):246-55. https://doi.org/10.1002/JPER.21-0091 PMid:34061357 DOI: https://doi.org/10.1002/JPER.21-0091
Belenichev IF, Vizir VA, Mamchur VY, Kuriata OV. Place of tiotriazoline in the gallery of modern metabolitotropic medicines. Zaporozhye Med J. 2019;1:118-28. DOI: https://doi.org/10.14739/2310-1210.2019.1.155856
Bumbar ZО, Pinyazhko OR. The investigation of the combined application of thiotriazolin and urolesan in experimental periodontitis on the background of urolithiasis. Exp Clin Physiol Biochem. 2017;4:61-70. https://doi.org/10.25040/ecpb2017.04.061 DOI: https://doi.org/10.25040/ecpb2017.04.061
Reheda M, Shchepanskyi B. Changes of lipoperoxidation and antioxidant system in pariodontal tissues in experimental bronchial asthma under conditions of chronic periodonitis and correction of these changes with thiotriazoline. J Educ Health Sport. 2018;8(4):470-8.
Regeda MS, Olekshiy PV, Kolishetska MA. Injecting the drug thiocetam on the destruction of the immune system of the blood of guinea pigs for the minds of the formation of experimental periodontitis and immobilization stress. Bull Mar Med. 2021;4(93):107-11.
Pourrajab B, Fatxahi S, Sohouli MH, Găman MA, Shidfar F. The effects of probiotic/synbiotic supplementation compared to placebo on biomarkers of oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;62(2):490-507. https://doi.org/10.1080/10408398.2020.1821166 PMid:33016089 DOI: https://doi.org/10.1080/10408398.2020.1821166
Kucherenko LI, Belenichev IF, Mazur IA, Khromylova OV. Metabolithotropic aspects of cardioprotective action of new combined medicine based on L-arginine and thiotriazolin at modeling of myocardial infarction. Asian J Pharm Clin Res. 2017;10(10):158-61. https://doi.org/10.22159/ajpcr.2017.v10i10.19895 DOI: https://doi.org/10.22159/ajpcr.2017.v10i10.19895
Gorokhivsky VN, Schneider SA, Tkachenko EK. Development of an experimental model of periodontitis. Innov Dent. 2018;1(17):56-60.
Chekman IS, Belenichev IF, Gorchakova NA, Nagornaya EA, Bukhtiyarova NV, Syrova AO, et al. Information Technologies in Medicine and Pharmacy. Dnipro: Zhurfond; 2022. p. 276.
Zhao C, Zou T, Tang R, Zhu C. Placenta-specific 8 (PLAC8) mediates inflammation and mobility of the hPDLCs via MEK/ERK signaling pathway. Int Immunopharmacol. 2022;103:108459. https://doi.org/10.1016/j.intimp.2021.108459 PMid:34954560 DOI: https://doi.org/10.1016/j.intimp.2021.108459
Sczepanik FS, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2000. 2020;84(1):45-68. https://doi.org/10.1111/prd.12342 PMid:32844417 DOI: https://doi.org/10.1111/prd.12342
Tóthová LU, Celec P. Oxidative stress and antioxidants in the diagnosis and therapy of periodontitis. Front Physiol. 2017;8:105. https://doi.org/10.3389/fphys.2017.01055.5 PMid:29311982 DOI: https://doi.org/10.3389/fphys.2017.01055
Hirschfeld J, White PC, Milward MR, Cooper PR, Chapple IL. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect Immun. 2017;85(12):e00297-17. https://doi.org/10.1128/IAI.00297-17 PMid:28947649 DOI: https://doi.org/10.1128/IAI.00297-17
Mazur I, Belenichev I, Kucherenko L, Bukhtiyarova N, Puzyrenko A, Khromylova O, et al. Antihypertensive and cardioprotective effects of new compound 1-(β-phenylethyl)-4- amino-1, 2, 4-triazolium bromide (Hypertril). Eur J Pharmacol. 2019;853:336-44. https://doi.org/10.1016/j.ejphar.2019.04.013 PMid:30978321 DOI: https://doi.org/10.1016/j.ejphar.2019.04.013
Ahmadi-Motamayel F, Goodarzi MT, Jamshidi Z, Kebriaei R. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: A case-control study. Front Physiol. 2017;8:189. https://doi.org/10.3389/fphys.2017.00189 PMid:28408887 DOI: https://doi.org/10.3389/fphys.2017.00189
Wang Y, Huang X, He F. Mechanism and role of nitric oxide signaling in periodontitis. Exp Ther Med. 2019;18(5):3929-35. https://doi.org/10.3892/etm.2019.8044 PMid:31641379 DOI: https://doi.org/10.3892/etm.2019.8044
Toczewska J, Konopka T, Zalewska A, Maciejczyk M. Nitrosative stress biomarkers in the non-stimulated and stimulated saliva, as well as gingival crevicular fluid of patients with periodontitis: Review and clinical study. Antioxidants (Basel). 2020;9(3):259. https://doi.org/10.3390/antiox9030259 PMid:32245286 DOI: https://doi.org/10.3390/antiox9030259
Kryvenko VI, Kolesnyk MY, Bielenichev IF, Pavlov SV. Thiotriazolin effectiveness in complex treatment of patients with post-COVID syndrome. Zaporozhye Med J. 2021;23(3):402-11. DOI: https://doi.org/10.14739/2310-1210.2021.3.229981
Belenichev I, Gorbachova S, Pavlov S, Bukhtiyarova N, Puzyrenko A, Brek O. Neurochemical status of nitric oxide in the settings of the norm, ischemic event of central nervous system, and pharmacological BN intervention. Georgian Med News. 2021;1(315):169-76. PMid:34365445
Belenichev IF, Parhomenko DP, Voznyi AV, Kuchkovskyi OM, Portna OA. Justification for the use of l-arginine and Thiotriazolin in the treatment of chronic parodontitis. Biol Markers Fundam Clin Med. 2021;5(1):21-7.
Belenichev IF, Shah F, Chekman IS, Nagornaya EA, Gorbacheva SV, Gorchakova NA, et al. Thiol-Disulfide System: Role in Endogenous Cyto-and Organoprotection, Pathways of Pharmacological Modulation. Kyiv: LLC Vydavnytstvo Yuston; 2020.
Belenichev I, Kucherenko L, Pavlov S, Bukhtiyarova N, Popazova O, Derevianko N, et al. Therapy of post-COVID-19 syndrome: Improving the efficiency and safety of basic metabolic drug treatment with tiazotic acid (thiotriazoline). Pharmacia. 2022;69(2):509-16. https://doi.org/10.3897/pharmacia.69.e82596 DOI: https://doi.org/10.3897/pharmacia.69.e82596
Burlaka BS, Belenichev IF, Ryzhenko OI, Ryzhenko VP, Aliyeva OG, Makyeyeva LV, et al. The effect of intranasal administration of an IL-1b antagonist (RAIL) on the state of the nitroxidergic system of the brain during modeling of acute cerebrovascular accident. Pharmaceuticals. 2021;68(3):665-70. https://doi.org/10.3897/pharmacia.68.e71243 DOI: https://doi.org/10.3897/pharmacia.68.e71243
Polkovnikov O, Pavlov S, Belenichev I, Matolinets N. Endothelial dysfunction under experimental subarachnoid hemorrhage. Possible ways of pharmacocorrection. Proc Shevchenko Sci Soc Med Sci. 2021;65(2):88-99. DOI: https://doi.org/10.25040/ntsh2021.02.08
Belenichev IF, Reznichenko YG, Reznichenko NY, Ryzhenko OI. Perinatal Lesions of the Nervous System. Zaporozhye: Prosvita; 2020. p. 364.
Belenichev IF, Aliyeva EG, Kamyshny OM, Bukhtiyarova NV, Ryzhenko VP, Gorchakova NO. Pharmacological modulation of endogenous neuroprotection after experimental prenatal hypoxia. Neurochem J. 2022;16(1):68-75. https://doi.org/10.1134/S1819712422010044 DOI: https://doi.org/10.1134/S1819712422010044
Downloads
Published
How to Cite
License
Copyright (c) 2023 Daria Parkhomenko, Igor Belenichev, Nina Bukhtiyarova, Oleh Kuchkovskyi, Nadia Gorchakova, Vira Diachenko, Еvgen Fedotov (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0