Screening for Anti Mycobacterium tuberculosis Activity of Streptomyces sp. from Lapindo Mud in Sidoarjo, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2023.10765Keywords:
Screening, Streptomyces, Anti-Mycobacterium tuberculosis, Lapindo mud, Indonesian womenAbstract
BACKGROUND: Streptomyces sp. from Indonesian soil have not been explored and isolated to find new strains as a source of antibiotics for the treatment of tuberculosis (TB) disease.
AIM: In this study, the effect of Streptomyces spp. from Lapindo mud in Sidoarjo, Indonesia be observed, to find out whether Streptomyces spp. has anti-TB activity.
METHODS: The primers Strep F; 5-AGAGTTTGAT CCTGKGTCAG-3 and Strep R; 5-AAGGGAG GTGATCCAKKGKGA-3 were used in polymerase chain reaction amplification of the 16S rRNA gene against Streptomyces strains. The anti-TB activity of Streptomyces sp. was determined by broth dilution method using Middlebrook 7H9 media.
RESULTS: The results showed that new types of Streptomyces spp., namely, Streptomyces A, Streptomyces D, Streptomyces Ea, Streptomyces Ep, Streptomyces I, Streptomyces F, and Streptomyces G from garbage dump soils. This result also showed that the activity of Streptomyces I, Streptomyces F, and Streptomyces G could inhibit the Mycobacterium TB growth by with inhibitory zones, respectively, 2 ± 0.3; 8 ± 0.7 and 15 ± 0.9mm, while Streptomyces A, Streptomyces D, Streptomyces Ea, and Streptomyces Ep did not inhibit M. TB.
CONCLUSION: Thus, from the results obtained, it can be concluded that Streptomyces extract mainly Streptomyces G has promising anti-TB activity by preliminary in vitro techniques. Therefore, it has the definite potential as a source of compounds that may be developed further into antimycobacterial drugs.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
World Health Organization. WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization; 2019.
Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int J Microbiol. 2019;2019:1-20. https://doi.org/10.1155/2019/5283948 PMid:31354829 DOI: https://doi.org/10.1155/2019/5283948
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015;80(1):1- 43. https://doi.org/10.1128/MMBR.00019-15 PMid:26609051 DOI: https://doi.org/10.1128/MMBR.00019-15
Genilloud O. Actinomycetes: Still a source of novel antibiotics. Nat Prod Rep. 2017;34(10):1203-32. https://doi.org/10.1039/c7np00026j PMid:28820533 DOI: https://doi.org/10.1039/C7NP00026J
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040-8. https://doi.org/10.1099/jmm.0.001232 PMid:32692643 DOI: https://doi.org/10.1099/jmm.0.001232
Khushboo, Kumar P, Dubey KK, Usmani Z, Sharma M, Gupta VK. Biotechnological and industrial applications of Streptomyces metabolites. Biofuel Bioprod Biorefin. 2022;16(1):244-64. https://doi.org/10.1002/bbb.2294 DOI: https://doi.org/10.1002/bbb.2294
Harir M, Bendif H, Bellahcene M, Fortas Z, Pogni R. Streptomyces secondary metabolites. In: Basic Biology and Applications of Actinobacteria. Vol. 6. London, UK: InTech Publishers; 2018. p. 99-122. DOI: https://doi.org/10.5772/intechopen.79890
Sapkota A, Thapa A, Budhathoki A, Sainju M, Shrestha P, Aryal S. Isolation, characterization, and screening of antimicrobial producing actinomycetes from soil samples. Int J Microbiol. 2020;2020(2):1-7. https://doi.org/10.1155/2020/2716584 DOI: https://doi.org/10.1155/2020/2716584
Kharel MK, Shepherd MD, Nybo SE, Smith ML, Bosserman MA, Rohr J. Isolation of Streptomyces species from soil. Current Protoc Microbiol. 2010;10(19):???. https://doi.org/10.1002/9780471729259.mc10e04s19 DOI: https://doi.org/10.1002/9780471729259.mc10e04s19
Khattab AI, Babiker EH, Saeed HA. Streptomyces: Isolation, optimization of culture conditions and extraction of secondary metabolites. Int Curr Pharm J. 2016;5(3):27-32. https://doi.org/10.3329/icpj.v5i3.26695 DOI: https://doi.org/10.3329/icpj.v5i3.26695
Zhou LF, Wu J, Li S, Jin LP, Yin CP, Zhan YL, et al. Antibacterial potential of termite-associated Streptomyces spp. ACS Omega. 2021;6(6):4329-34. https://doi.org/10.1021/acsomega.0c05580 DOI: https://doi.org/10.1021/acsomega.0c05580
Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6(4):313-21. https://doi.org/10.1054/modi.2001.29158 PMid:11774196 DOI: https://doi.org/10.1054/modi.2001.29158
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8(2):e57923. https://doi.org/10.1371/journal.pone.0057923 PMid:23460914 DOI: https://doi.org/10.1371/journal.pone.0057923
Ibal JC, Pham HQ, Park CE, Shin JH. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS One. 2019;14(2):e0212090. https://doi.org/10.1371/journal.pone.0212090 PMid:30768621 DOI: https://doi.org/10.1371/journal.pone.0212090
Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep. 2017;7(1):11089. https://doi.org/10.1038/s41598-017-11363-1 PMid:28894255 DOI: https://doi.org/10.1038/s41598-017-11363-1
Kumar RR, Jadeja VJ. Isolation of actinomycetes: A complete approach. Int J Curr Microbiol Appl Sci. 2016;5(5):606-18. https://doi.org/10.20546/ijcmas.2016.505.062 DOI: https://doi.org/10.20546/ijcmas.2016.505.062
Wang TY, Wang L, Zhang JH, Dong WH. A simplified universal genomic DNA extraction protocol suitable for PCR. Genet Mol Res. 2011;10(1):519-25. https://doi.org/10.4238/vol10-1gmr1055 PMid:21476197 DOI: https://doi.org/10.4238/vol10-1gmr1055
Kurnijasanti R, Sudjarwo SA. Identification of Streptomyces spp. from garbage dump soils in Surabaya, Indonesia. Vet World. 2022;15(3):634-9. https://doi.org/10.14202/vetworld.2022.634-639 PMid:35497943 DOI: https://doi.org/10.14202/vetworld.2022.634-639
Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer R. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24(16):1757-64. https://doi.org/10.1093/bioinformatics/btn322 PMid:18567917 DOI: https://doi.org/10.1093/bioinformatics/btn322
National Center for Biotechnology Information. National Center for Biotechnology Information (NCBI). Bethesda, Maryland: National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih. [Last accessed on 2022 Feb 26].
Abouwarda A, El-Wafa WM. Production of anti-mycobacterial agents by Egyptian Streptomyces isolates. Int J Microbiol Res. 2011;2(1):69-73
Downloads
Published
How to Cite
License
Copyright (c) 2023 Rochmah Kurnijasanti, Muhammad Rais, Sri Agus Sudjarwo (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Kementerian Riset, Teknologi dan Pendidikan Tinggi,Kementerian Riset, Teknologi dan Pendidikan Tinggi
Grant numbers 200/UN3.14/LT/2018.