Screening for Anti Mycobacterium tuberculosis Activity of Streptomyces sp. from Lapindo Mud in Sidoarjo, Indonesia

Authors

  • Rochmah Kurnijasanti Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
  • Muhammad Rais Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • Sri Agus Sudjarwo Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.10765

Keywords:

Screening, Streptomyces, Anti-Mycobacterium tuberculosis, Lapindo mud, Indonesian women

Abstract

BACKGROUND: Streptomyces sp. from Indonesian soil have not been explored and isolated to find new strains as a source of antibiotics for the treatment of tuberculosis (TB) disease.

AIM: In this study, the effect of Streptomyces spp. from Lapindo mud in Sidoarjo, Indonesia be observed, to find out whether Streptomyces spp. has anti-TB activity.

METHODS: The primers Strep F; 5-AGAGTTTGAT CCTGKGTCAG-3 and Strep R; 5-AAGGGAG GTGATCCAKKGKGA-3 were used in polymerase chain reaction amplification of the 16S rRNA gene against Streptomyces strains. The anti-TB activity of Streptomyces sp. was determined by broth dilution method using Middlebrook 7H9 media.

RESULTS: The results showed that new types of Streptomyces spp., namely, Streptomyces A, Streptomyces D, Streptomyces Ea, Streptomyces Ep, Streptomyces I, Streptomyces F, and Streptomyces G from garbage dump soils. This result also showed that the activity of Streptomyces I, Streptomyces F, and Streptomyces G could inhibit the Mycobacterium TB growth by with inhibitory zones, respectively, 2 ± 0.3; 8 ± 0.7 and 15 ± 0.9mm, while Streptomyces A, Streptomyces D, Streptomyces Ea, and Streptomyces Ep did not inhibit M. TB.

CONCLUSION: Thus, from the results obtained, it can be concluded that Streptomyces extract mainly Streptomyces G has promising anti-TB activity by preliminary in vitro techniques. Therefore, it has the definite potential as a source of compounds that may be developed further into antimycobacterial drugs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization; 2019.

Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int J Microbiol. 2019;2019:1-20. https://doi.org/10.1155/2019/5283948 PMid:31354829 DOI: https://doi.org/10.1155/2019/5283948

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015;80(1):1- 43. https://doi.org/10.1128/MMBR.00019-15 PMid:26609051 DOI: https://doi.org/10.1128/MMBR.00019-15

Genilloud O. Actinomycetes: Still a source of novel antibiotics. Nat Prod Rep. 2017;34(10):1203-32. https://doi.org/10.1039/c7np00026j PMid:28820533 DOI: https://doi.org/10.1039/C7NP00026J

Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040-8. https://doi.org/10.1099/jmm.0.001232 PMid:32692643 DOI: https://doi.org/10.1099/jmm.0.001232

Khushboo, Kumar P, Dubey KK, Usmani Z, Sharma M, Gupta VK. Biotechnological and industrial applications of Streptomyces metabolites. Biofuel Bioprod Biorefin. 2022;16(1):244-64. https://doi.org/10.1002/bbb.2294 DOI: https://doi.org/10.1002/bbb.2294

Harir M, Bendif H, Bellahcene M, Fortas Z, Pogni R. Streptomyces secondary metabolites. In: Basic Biology and Applications of Actinobacteria. Vol. 6. London, UK: InTech Publishers; 2018. p. 99-122. DOI: https://doi.org/10.5772/intechopen.79890

Sapkota A, Thapa A, Budhathoki A, Sainju M, Shrestha P, Aryal S. Isolation, characterization, and screening of antimicrobial producing actinomycetes from soil samples. Int J Microbiol. 2020;2020(2):1-7. https://doi.org/10.1155/2020/2716584 DOI: https://doi.org/10.1155/2020/2716584

Kharel MK, Shepherd MD, Nybo SE, Smith ML, Bosserman MA, Rohr J. Isolation of Streptomyces species from soil. Current Protoc Microbiol. 2010;10(19):???. https://doi.org/10.1002/9780471729259.mc10e04s19 DOI: https://doi.org/10.1002/9780471729259.mc10e04s19

Khattab AI, Babiker EH, Saeed HA. Streptomyces: Isolation, optimization of culture conditions and extraction of secondary metabolites. Int Curr Pharm J. 2016;5(3):27-32. https://doi.org/10.3329/icpj.v5i3.26695 DOI: https://doi.org/10.3329/icpj.v5i3.26695

Zhou LF, Wu J, Li S, Jin LP, Yin CP, Zhan YL, et al. Antibacterial potential of termite-associated Streptomyces spp. ACS Omega. 2021;6(6):4329-34. https://doi.org/10.1021/acsomega.0c05580 DOI: https://doi.org/10.1021/acsomega.0c05580

Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6(4):313-21. https://doi.org/10.1054/modi.2001.29158 PMid:11774196 DOI: https://doi.org/10.1054/modi.2001.29158

Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8(2):e57923. https://doi.org/10.1371/journal.pone.0057923 PMid:23460914 DOI: https://doi.org/10.1371/journal.pone.0057923

Ibal JC, Pham HQ, Park CE, Shin JH. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS One. 2019;14(2):e0212090. https://doi.org/10.1371/journal.pone.0212090 PMid:30768621 DOI: https://doi.org/10.1371/journal.pone.0212090

Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep. 2017;7(1):11089. https://doi.org/10.1038/s41598-017-11363-1 PMid:28894255 DOI: https://doi.org/10.1038/s41598-017-11363-1

Kumar RR, Jadeja VJ. Isolation of actinomycetes: A complete approach. Int J Curr Microbiol Appl Sci. 2016;5(5):606-18. https://doi.org/10.20546/ijcmas.2016.505.062 DOI: https://doi.org/10.20546/ijcmas.2016.505.062

Wang TY, Wang L, Zhang JH, Dong WH. A simplified universal genomic DNA extraction protocol suitable for PCR. Genet Mol Res. 2011;10(1):519-25. https://doi.org/10.4238/vol10-1gmr1055 PMid:21476197 DOI: https://doi.org/10.4238/vol10-1gmr1055

Kurnijasanti R, Sudjarwo SA. Identification of Streptomyces spp. from garbage dump soils in Surabaya, Indonesia. Vet World. 2022;15(3):634-9. https://doi.org/10.14202/vetworld.2022.634-639 PMid:35497943 DOI: https://doi.org/10.14202/vetworld.2022.634-639

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer R. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24(16):1757-64. https://doi.org/10.1093/bioinformatics/btn322 PMid:18567917 DOI: https://doi.org/10.1093/bioinformatics/btn322

National Center for Biotechnology Information. National Center for Biotechnology Information (NCBI). Bethesda, Maryland: National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih. [Last accessed on 2022 Feb 26].

Abouwarda A, El-Wafa WM. Production of anti-mycobacterial agents by Egyptian Streptomyces isolates. Int J Microbiol Res. 2011;2(1):69-73

Downloads

Published

2023-01-02

How to Cite

1.
Kurnijasanti R, Rais M, Sudjarwo SA. Screening for Anti Mycobacterium tuberculosis Activity of Streptomyces sp. from Lapindo Mud in Sidoarjo, Indonesia. Open Access Maced J Med Sci [Internet]. 2023 Jan. 2 [cited 2024 Nov. 21];11(A):87-91. Available from: https://oamjms.eu/index.php/mjms/article/view/10765