The Mangosteen Peel Ethyl Acetate Extract-based Cream Inhibits Ultraviolet-B Radiation-induced Hyperpigmentation in Guinea Pig Skin
DOI:
https://doi.org/10.3889/oamjms.2022.10838Keywords:
Ultraviolet B, Hyperpigmentation, Mangosteen peel, Tyrosinase, Pmel17Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing the aberrant melanin pigments leading to skin hyperpigmentation. Retinoic acid and hydroquinone are the primary preference for the skin whitening agents in preventing hyperpigmentation. However, these treatments could induce slight-to-severe irritation leading to skin cancer. Mangosteen peel possesses α-mangostin, the primary constituent of xanthones in mangosteen peel that has potency as an anti-tyrosinase for treating issues of skin hyperpigmentation.
AIM: This study aims to demonstrate the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.
MATERIALS AND METHODS: A total of 25 female guinea pigs were used to produce UVB-irradiated skin hyperpigmentation model. Guinea pig skins were treated with 12% mangosteen ethyl acetate extract-based cream. Mushroom tyrosinase inhibitor activity was used to evaluate the capacity of mangosteen extract in inhibiting tyrosinase activity in vitro. The melanin index in guinea pig skin after treatments was analyzed using a mexameter. The percentage of epidermal melanin-contained keratinocytes of skin tissues were analyzed using masson fontana. Pmel17 expression in cell surface was determined using immunohistochemistry. The level of tyrosinase in tissue homogenates was analyzed using Enzyme-linked immunosorbent assays.
RESULTS: Mangosteen peel ethyl acetate extract showed potent inhibitory activity against the mushroom tyrosinase. Its-based cream decreased melanin index, epidermal melanin, Pmel17 expression, and tyrosinase level in hyperpigmentation skin tissues.
CONCLUSION: Overall, our study demonstrates the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kim HY, Sah SK, Choi SS, Kim TY. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes. Life Sci. 2018;210:201-8. https://doi.org/10.1016/j.lfs.2018.08.056 PMid:30145155 DOI: https://doi.org/10.1016/j.lfs.2018.08.056
Grether-Beck S, Marini A, Jaenicke T, Krutmann J. Photoprotection of human skin beyond ultraviolet radiation. Photodermatol Photoimmunol Photomed. 2014;30(2-3):167-74. https://doi.org/10.1111/phpp.12111 PMid:24433486 DOI: https://doi.org/10.1111/phpp.12111
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal. 2017;40:99-115. https://doi.org/10.1016/j.cellsig.2017.09.004 PMid:28911859 DOI: https://doi.org/10.1016/j.cellsig.2017.09.004
Putra A, Ibrahim S, Muhar AM, Kuntardjo N, Dirja BT, Pasongka Z, et al. Topical gel of mesenchymal stem cells-conditioned medium under TNF-α precondition accelerates wound closure healing in full-thickness skin defect animal model. J Med Life. 2022;15(2):214-21. https://doi.org/10.25122/jml-2019-0103 PMid:35419097 DOI: https://doi.org/10.25122/jml-2019-0103
Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients. 2019;11(6):1341. https://doi.org/10.3390/nu11061341 PMid:31207929 DOI: https://doi.org/10.3390/nu11061341
Orazio JD, Jarrett S, Amaro-ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14:12222-48. https://doi.org/10.3390/ijms140612222 PMid:23749111 DOI: https://doi.org/10.3390/ijms140612222
Shih BB, Farrar MD, Cooke MS, Osman J, Langton AK, Kift R, et al. Fractional sunburn threshold UVR doses generate equivalent Vitamin D and DNA damage in skin Types I-VI but with epidermal DNA damage gradient correlated to skin darkness. J Invest Dermatol. 2018;138(10):2244-52. https://doi.org/10.1016/j.jid.2018.04.015 PMid:29730334 DOI: https://doi.org/10.1016/j.jid.2018.04.015
Santana JO, De Azevedo FL, Filho PC. Pityriasis versicolor: Clinical-epidemiological characterization of patients in the urban area of Buerarema-BA, Brazil. An Bras Dermatol. 2013;88(2):216-21. https://doi.org/10.1590/S0365-05962013000200005 PMid:23739695 DOI: https://doi.org/10.1590/S0365-05962013000200005
Bandyopadhyay D. Topical treatment of melasma. Indian J Dermatol. 2009;54(4):303-9. https://doi.org/10.4103/0019-5154.57602 PMid:20101327 DOI: https://doi.org/10.4103/0019-5154.57602
Desai SR. Hyperpigmentation therapy: A review. J Clin Aesthet Dermatol. 2014;7(8):13-7. PMid:25161755
Suttirak W, Manurakchinakorn S. In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol. 2014;51(12):3546-58. https://doi.org/10.1007/s13197-012-0887-5 PMid:25477623 DOI: https://doi.org/10.1007/s13197-012-0887-5
Hassan WN, Zulkifli RM, Basar N, Ahmad F, Yunus MA. Antioxidant and tyrosinase inhibition activities of α-mangostin and Garcinia mangostana Linn. pericarp extracts. J Appl Pharm Sci. 2015;5(9):37-40. https://doi.org/10.7324/JAPS.2015.50907 DOI: https://doi.org/10.7324/JAPS.2015.50907
Tadtong S, Viriyaroj A, Vorarat S, Nimkulrat S, Suksamrarn S. Antityrosinase and antibacterial activities of mangosteen pericarp extract. J Health Res. 2009;23(2):99-102.
Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med. 2014;14(1):381. https://doi.org/10.1186/1472-6882-14-381 PMid:25292439 DOI: https://doi.org/10.1186/1472-6882-14-381
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The modulation of melanogenesis in B16 cells upon treatment with plant extracts and isolated plant compounds. Molecules. 2022;27(14):4360. https://doi.org/10.3390/molecules27144360 PMid:35889231 DOI: https://doi.org/10.3390/molecules27144360
Buravlev EV, Shevchenko OG, Anisimov AA, Suponitsky KY. Novel mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity. Eur J Med Chem. 2018;152:10-20. https://doi.org/10.1016/j.ejmech.2018.04.022 PMid:29684706 DOI: https://doi.org/10.1016/j.ejmech.2018.04.022
Harlisa P, Sentono HK, Purwanto B, Dirgahayu P, Soetrisno S. The ethyl acetate extract of mangosteen peel cream attenuates ultraviolet b radiation-induced apoptotic cell death via antioxidant effect by regulation TNF-Α and caspase 3 in Guinea pig skin. Banglad J Med Sci. 2022;21(3):512-20. https://doi.org/10.3329/bjms.v21i3.59563 DOI: https://doi.org/10.3329/bjms.v21i3.59563
Pandel R, Poljšak B, Godic A, Dahmane R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol. 2013;2013:930164. https://doi.org/10.1155/2013/930164 PMid:24159392 DOI: https://doi.org/10.1155/2013/930164
Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539-49. https://doi.org/10.1111/j.1751-1097.2007.00226.x PMid:18435612 DOI: https://doi.org/10.1111/j.1751-1097.2007.00226.x
Panich U, Sittithumcharee G, Rathviboon N, Jirawatnotai S. Ultraviolet radiation-induced skin aging: The role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int. 2016;2016:7370642. https://doi.org/10.1155/2016/7370642 PMid:27148370 DOI: https://doi.org/10.1155/2016/7370642
García-Gavín J, González-Vilas D, Fernández-Redondo V, Toribio J. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermatitis. 2010;62(1):63-4. https://doi.org/10.1111/j.1600-0536.2009.01673.x PMid:20136888 DOI: https://doi.org/10.1111/j.1600-0536.2009.01673.x
Do HT, Cho J. Mangosteen pericarp and its bioactive xanthones: Potential therapeutic value in Alzheimer’s disease, Parkinson’s disease, and depression with pharmacokinetic and safety profiles. Int J Mol Sci. 2020;21(17):6211. https://doi.org/10.3390/ijms21176211 PMid:32867357 DOI: https://doi.org/10.3390/ijms21176211
Sultan OS, Kantilal HK, Khoo SP, Davamani AF, Eusufzai SZ, Rashid F, et al. The potential of α-mangostin from Garcinia mangostana as an effective antimicrobial agent-a systematic review and meta-analysis. Antibiotics (Basel). 2022;11(6):717. https://doi.org/10.3390/antibiotics11060717 PMid:35740124 DOI: https://doi.org/10.3390/antibiotics11060717
Li G, Thomas S, Johnson JJ. Polyphenols from the mangosteen (Garcinia mangostana) fruit for breast and prostate cancer. Front Pharmacol. 2013;4:80. https://doi.org/10.3389/fphar.2013.00080 PMid:23805102 DOI: https://doi.org/10.3389/fphar.2013.00080
Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother Res. 2009;23(8):1047-65. https://doi.org/10.1002/ptr.2730 PMid:19172667 DOI: https://doi.org/10.1002/ptr.2730
Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E. Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Curr Mol Med. 2011;11(8):666-77. https://10.2174/156652411797536679 PMid:21902651 DOI: https://doi.org/10.2174/156652411797536679
Rafiq M, Nazir Y, Ashraf Z, Rafique H, Afzal S, Mumtaz A, et al. Synthesis, computational studies, tyrosinase inhibitory kinetics and antimelanogenic activity of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives. J Enzyme Inhib Med Chem. 2019;34(1):1562-72. https://doi.org/10.1080/14756366.2019.1654468 PMid:31456445 DOI: https://doi.org/10.1080/14756366.2019.1654468
Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012;25(1):14-27. https://doi.org/10.1111/j.1755-148X.2011.00898.x PMid:21834848 DOI: https://doi.org/10.1111/j.1755-148X.2011.00898.x
Lee TH, Seo JO, Baek SH, Kim SY. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol Ther (Seoul). 2014;22(1):35-40. https://doi.org/10.4062/biomolther.2013.081 PMid:24596619 DOI: https://doi.org/10.4062/biomolther.2013.081
Choi SY, Kim YC. Whitening effect of black tea water extract on brown Guinea pig skin. Toxicol Res. 2011;27(3):153-60. https://doi.org/10.5487/TR.2011.27.3.153 PMid:24278566 DOI: https://doi.org/10.5487/TR.2011.27.3.153
Lee TH, Kang JH, Seo JO, Baek SH, Moh SH, Chae JK, et al. Anti-melanogenic potentials of nanoparticles from calli of resveratrol-enriched rice against UVB-induced hyperpigmentation in Guinea pig skin. Biomol Ther (Seoul). 2016;24(1):85-93. https://doi.org/10.4062/biomolther.2015.165 PMid:26759706 DOI: https://doi.org/10.4062/biomolther.2015.165
Kovacs D, Flori E, Maresca V, Ottaviani M, Aspite N, Dell’Anna ML, et al. The eumelanin intermediate 5,6-dihydroxyindole-2- carboxylic acid is a messenger in the cross-talk among epidermal cells. J Invest Dermatol. 2012;132(4):1196-205. https://doi.org/10.1038/jid.2011.457 PMid:22297637 DOI: https://doi.org/10.1038/jid.2011.457
Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol. 2011;6(1):97-108. https://doi.org/10.1586/edm.10.70 PMid:21572549 DOI: https://doi.org/10.1586/edm.10.70
Hoashi T, Tamaki K, Hearing VJ. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding. FASEB J. 2010;24(3):916-30. https://doi.org/10.1096/fj.09-140921 PMid:19884326 DOI: https://doi.org/10.1096/fj.09-140921
Downloads
Published
How to Cite
License
Copyright (c) 2022 Pasid Harlisa, Harijono Kariosentono, Bambang Purwanto, Paramasari Dirgahayu, Soetrisno Soetrisno, Brian Wasita, Iffan Alif, Agung Putra (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0