Dapagliflozin Protection against Myocardial Ischemia by Modulating Sodium-glucose Transporter 2 Inhibitor, Silent Information Regulator 1, and Fatty Acid Synthase Expressions
DOI:
https://doi.org/10.3889/oamjms.2022.10861Keywords:
Dapagliflozin, FASN, Ischemic myocardium, Isoproterenol, SGLT2, SIRT1Abstract
BACKGROUND: The emerging role of sodium-glucose transporter 2 (SGLT2) inhibitors drugs as potential therapeutic agents in myocardial ischemic (MI) injury treatment has raised the concern for possible mechanisms of action.
AIM: The current experimental study aimed to investigate the possible protective effects of dapagliflozin (DAPA) a SGLT2i, on isoproterenol (ISO)-induced MI in rats.
MATERIALS AND METHODS: Thirty Wistar rats were divided randomly and equally into three groups. Group 1 (control group): Received 1.0 mL of normal saline through an orogastric tube for 14 days. Group 2 (ISO group): Received 1.0 mL of normal saline orally through an orogastric tube for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was freshly dissolved in normal saline and injected subcutaneously once daily. Group 3 (ISO + DAPA-treated group): Received DAPA 1.0 mg/kg/day orally for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was introduced like that described in Group 2.
RESULTS: DAPA protects MI development by reversal of blood pressure changes, electrocardiographic alterations, stabilization of cardiac enzymes, inflammation restoration, oxidative stress, and lipid profile. SGLT2 was overexpressed in the ISO-induced MI, which declined in the ISO + DAPA group. Moreover, DAPA induced silent information regulator 1 (SIRT1)/fatty acid synthase (FASN) overexpression in ISO-induced MI. DAPA could have a potential protective role against acute MI.
CONCLUSION: DAPA protects against acute MI by modulating SIRT1 and FASN expression in cardiac muscles, suppressing oxidative stress, and downregulating inflammatory mediators.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Rastogi A, Novak E, Platts AE, Mann DL. Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. Eur J Heart Fail. 2017;19(12):1597-605. https://doi.org/10.1002/ejhf.879 PMid:29024350 DOI: https://doi.org/10.1002/ejhf.879
Adnan G, Singh DP, Mahajan K. Coronary Artery Thrombus. Treasure Island, FL: StatPearls; 2021.
Ojha N, Dhamoon AS. Myocardial Infarction. Treasure Island, FL: StatPearls Publishing; 2021.
Sharifi-Rad M, Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:694. https://doi.org/10.3389/fphys.2020.00694 PMid:32714204 DOI: https://doi.org/10.3389/fphys.2020.00694
D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28(8):711-32. https://doi.org/10.1089/ars.2017.7178 PMid:28661724 DOI: https://doi.org/10.1089/ars.2017.7178
Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15(10):585-600. https://doi.org/10.1038/s41569-018-0036-6 PMid:29872165 DOI: https://doi.org/10.1038/s41569-018-0036-6
Brown E, Wilding JP, Alam U, Barber TM, Karalliedde J, Cuthbertson DJ. The expanding role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann Med. 2020;53(1):2072-89. https://doi.org/10.1080/07853890.2020.1841281 PMid:33107349 DOI: https://doi.org/10.1080/07853890.2020.1841281
Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig. 2020;11(4):770-82. https://doi.org/10.1111/jdi.13255 PMid:32196987 DOI: https://doi.org/10.1111/jdi.13255
Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):73-9. https://doi.org/10.1097/MED.0000000000000311 PMid:27898586 DOI: https://doi.org/10.1097/MED.0000000000000311
Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: Beyond the glucose-lowering effect. Cardiovasc Diabetol. 2020;19(1):98. https://doi.org/10.1186/s12933-020-01071-y PMid:32590982 DOI: https://doi.org/10.1186/s12933-020-01071-y
Maejima Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med. 2020;6:186. https://doi.org/10.3389/fcvm.2019.00186 PMid:31970162 DOI: https://doi.org/10.3389/fcvm.2019.00186
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 2019;24:36. https://doi.org/10.1186/s11658-019-0158-9 PMid:31164908 DOI: https://doi.org/10.1186/s11658-019-0158-9
Swe MT, Thongnak L, Jaikumkao K, Pongchaidecha A, Chatsudthipong V, Lungkaphin A. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clin Sci (Lond). 2019;133(23):2415-30. https://doi.org/10.1042/CS20190863 PMid:31769484 DOI: https://doi.org/10.1042/CS20190863
Fhu CW, Ali A. Fatty acid synthase: An emerging target in cancer. Molecules. 2020;25(17):3935. https://doi.org/10.3390/molecules25173935 PMid:32872164 DOI: https://doi.org/10.3390/molecules25173935
Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):370-9. https://doi.org/10.1055/s-0028-1091981 PMid:18956293 DOI: https://doi.org/10.1055/s-0028-1091981
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, et al. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 2021;11(5):1098-116. https://doi.org/10.1016/j.apsb.2020.10.007 PMid:34094822 DOI: https://doi.org/10.1016/j.apsb.2020.10.007
Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol. 2020;177(16):3617-24. https://doi.org/10.1111/bph.15193 PMid:32662519 DOI: https://doi.org/10.1111/bph.15193
Huang H, Geng Q, Yao H, Shen Z, Wu Z, Miao X, et al. Protective effect of scutellarin on myocardial infarction induced by isoprenaline in rats. Iran J Basic Med Sci. 2018;21(3):267-76. https://doi.org/10.22038/ijbms.2018.26110.6415 PMid:29511493
Fedorova OV, Grigorova Y, Hagood M, Long J, McDevitt R, McPherson R, et al. P3‐209: Cognitive impairement is associated with premature arterial stiffening, aortic wall fibrosis and increased blood pressure: A novel rat model of age-dependent vascular dementia. Alzheimers Dement. 2018;14(7S_Part_21):P1149-50. https://doi.org/10.1016/j.jalz.2018.06.1568 DOI: https://doi.org/10.1016/j.jalz.2018.06.1568
Balea ŞS, Pârvu AE, Pop N, Marín FZ, Pârvu M. Polyphenolic compounds, antioxidant, and cardioprotective effects of pomace extracts from fetească neagră cultivar. Oxid Med Cell Longev. 2018;2018:8194721. https://doi.org/10.1155/2018/8194721 PMid:29765504 DOI: https://doi.org/10.1155/2018/8194721
Konopelski P, Ufnal M. Electrocardiography in rats: A comparison to human. Physiol Res. 2016;65(5):717-25. https://doi.org/10.33549/physiolres.933270 PMid:27429108 DOI: https://doi.org/10.33549/physiolres.933270
Stevens AB. Theory and Practice of Histological Techniques. London: Churchill Livingstone; 1996.
Wu X, Zayzafoon M, Zhang X, Hameed O. Is there a role for fatty acid synthase in the diagnosis of prostatic adenocarcinoma? A comparison with AMACR. Am J Clin Pathol. 2011;136(2):239-46. https://doi.org/10.1309/AJCP0Y5QWWYDKCJE PMid:21757596 DOI: https://doi.org/10.1309/AJCP0Y5QWWYDKCJE
Bai W, Zhang X. Nucleus or cytoplasm? The mysterious case of SIRT1’s subcellular localization. Cell Cycle. 2016;15(24):3337-8. https://doi.org/10.1080/15384101.2016.1237170 PMid:27687688 DOI: https://doi.org/10.1080/15384101.2016.1237170
Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit. 2017;23:3737-45. https://doi.org/10.12659/msm.902530 PMid:28763435 DOI: https://doi.org/10.12659/MSM.902530
McEwan P, Darlington O, McMurray JJ, Jhund PS, Docherty KF, Böhm M, et al. Cost-effectiveness of dapagliflozin as a treatment for heart failure with reduced ejection fraction: A multinational health-economic analysis of DAPA-HF. Eur J Heart Fail. 2020;22(11):2147-56. https://doi.org/10.1002/ejhf.1978 PMid:32749733 DOI: https://doi.org/10.1002/ejhf.1978
Li X, Lu Q, Qiu Y, Do Carmo JM, Wang Z, Da Silva AA, et al. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Assoc. 2021;10(6):e018298. https://doi.org/10.1161/JAHA.120.018298 PMid:33719499 DOI: https://doi.org/10.1161/JAHA.120.018298
Li X, Zhang ZL, Wang HF. Fusaric acid (FA) protects heart failure induced by isoproterenol (ISP) in mice through fibrosis prevention via TGF-β1/SMADs and PI3K/AKT signaling pathways. Biomed Pharmacother. 2017;93:130-45. https://doi.org/10.1016/j.biopha.2017.06.002 PMid:28624424 DOI: https://doi.org/10.1016/j.biopha.2017.06.002
Mustroph J, Wagemann O, Lücht CM, Trum M, Hammer KP, Sag CM, et al. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Fail. 2018;5(4):642-8. https://doi.org/10.1002/ehf2.12336 PMid:30117720 DOI: https://doi.org/10.1002/ehf2.12336
Chengji W, Xianjin F. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. J Cell Physiol. 2019;234(2):1682-8. https://doi.org/10.1002/jcp.27038 PMid:30076729 DOI: https://doi.org/10.1002/jcp.27038
Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, et al. Pretreatment with tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci. 2019;139(4):352-60. https://doi.org/10.1016/j.jphs.2019.02.008 PMid:30910451 DOI: https://doi.org/10.1016/j.jphs.2019.02.008
Khodir SA, Sweed E, Gadallah M, Shabaan A. Astaxanthin attenuates cardiovascular dysfunction associated with deoxycorticosterone acetate-salt-induced hypertension in rats. Clin Exp Hypertens. 2022;44(4):1-14. https://doi.org/10.1080/10641963.2022.2055764 PMid:35322744 DOI: https://doi.org/10.1080/10641963.2022.2055764
Yang L, Wang B, Zhou Q, Wang Y, Liu X, Liu Z, et al. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis. 2018;9(7):769. https://doi.org/10.1038/s41419-018-0805-5 PMid:29991775 DOI: https://doi.org/10.1038/s41419-018-0805-5
Rajadurai M, Prince PS. Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicology. 2007;230(2-3):178-88. https://doi.org/10.1016/j.tox.2006.11.053 PMid:17188415 DOI: https://doi.org/10.1016/j.tox.2006.11.053
Andreadou I, Efentakis P, Balafas E, Togliatto G, Davos CH, Varela A, et al. Empagliflozin limits myocardial infarction in vivo and cell death in vitro: Role of STAT3, mitochondria, and redox aspects. Front Physiol. 2017;8:1077. https://doi.org/10.3389/fphys.2017.01077 PMid:29311992 DOI: https://doi.org/10.3389/fphys.2017.01077
Pruett JE, Fernandez ED, Everman SJ, Vinson RM, Davenport K, Logan MK, et al. Impact of SGLT-2 inhibition on cardiometabolic abnormalities in a rat model of polycystic ovary syndrome. Int J Mol Sci. 2021;22(5):2576. https://doi.org/10.3390/ijms22052576 PMid:33806551 DOI: https://doi.org/10.3390/ijms22052576
Zhang Y, Liu Z, Zhou M, Liu C. Therapeutic effects of fibroblast growth factor21 against atherosclerosis via the NFκB pathway. Mol Med Rep. 2018;17(1):1453-60. https://doi.org/10.3892/mmr.2017.8100 PMid:29257234 DOI: https://doi.org/10.3892/mmr.2017.8100
Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors: Potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors. Circ Heart Fail. 2020;13(9):e007197. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007197 PMid:32894987 DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.120.007197
Rezq S, Nasr AM, Shaheen A, Elshazly SM. Doxazosin down-regulates sodium-glucose cotransporter-2 and exerts a renoprotective effect in rat models of acute renal injury. Basic Clin Pharmacol Toxicol. 2020;126(5):413-23. https://doi.org/10.1111/bcpt.13371 PMid:31788938 DOI: https://doi.org/10.1111/bcpt.13371
Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JW, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61(3):722-6. https://doi.org/10.1007/s00125-017-4509-7 PMid:29197997 DOI: https://doi.org/10.1007/s00125-017-4509-7
Hussein AM, Eid EA, Taha M, Elshazli RM, Bedir RF, Lashin LS. Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in Type 2 diabetic rats: Possible underlying mechanisms. Biomedicines. 2020;8(3):43. https://doi.org/10.3390/biomedicines8030043 PMid:32106580 DOI: https://doi.org/10.3390/biomedicines8030043
Arow M, Waldman M, Yadin D, Nudelman V, Shainberg A, Abraham NG, et al. Sodium-glucose cotransporter 2 inhibitor dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020;19(1):7. https://doi.org/10.1186/s12933-019-0980-4 PMid:31924211 DOI: https://doi.org/10.1186/s12933-019-0980-4
Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka TD, Ito K, Harada T, et al. Expression of SGLT1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemia-reperfusion injury in mice. PLoS One. 2015;10(6):e0130605. https://doi.org/10.1371/journal.pone.0130605 PMid:26121582 DOI: https://doi.org/10.1371/journal.pone.0130605
Van Steenbergen A, Balteau M, Ginion A, Ferté L, Battault S, Ravenstein CM, et al. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep. 2017;7:41166. https://doi.org/10.1038/srep41166 PMid:28128227 DOI: https://doi.org/10.1038/srep41166
Lee SY, Lee TW, Park GT, Kim JH, Lee HC, Han JH, et al. Sodium/glucose co-transporter 2 inhibitor, empagliflozin, alleviated transient expression of SGLT2 after myocardial infarction. Korean Circ J. 2021;51(3):251-62. https://doi.org/10.4070/kcj.2020.0303 PMid:33655725 DOI: https://doi.org/10.4070/kcj.2020.0303
Di Franco A, Cantini G, Tani A, Coppini R, Zecchi- Orlandini S, Raimondi L, et al. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: A new potential pharmacological target. Int J Cardiol. 2017;243:86-90. https://doi.org/10.1016/j.ijcard.2017.05.032 PMid:28526540 DOI: https://doi.org/10.1016/j.ijcard.2017.05.032
Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100(10):1512-21. https://doi.org/10.1161/01.RES.0000267723.65696.4a PMid:17446436 DOI: https://doi.org/10.1161/01.RES.0000267723.65696.4a
Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, et al. Downregulation of sirt1 as aging change in advanced heart failure. J Biomed Sci. 2014;21(1):57. https://doi.org/10.1186/1423-0127-21-57 PMid:24913149 DOI: https://doi.org/10.1186/1423-0127-21-57
Packer M. Autophagy-dependent and independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19(1):62. https://doi.org/10.1186/s12933-020-01041-4 PMid:32404204 DOI: https://doi.org/10.1186/s12933-020-01041-4
Ma S, Feng J, Zhang R, Chen J, Han D, Li X, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev. 2017;2017:4602715. https://doi.org/10.1155/2017/4602715 PMid:28883902 DOI: https://doi.org/10.1155/2017/4602715
Majeed Y, Halabi N, Madani AY, Engelke R, Bhagwat AM, Abdesselem H, et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep. 2021;11(1):8177. https://doi.org/10.1038/s41598-021-87759-x PMid:33854178 DOI: https://doi.org/10.1038/s41598-021-87759-x
Choi WI, Yoon JH, Choi SH, Jeon BN, Kim H, Hur MW. Proto-oncoprotein Zbtb7c and SIRT1 repression: Implications in high-fat diet-induced and age-dependent obesity. Exp Mol Med. 2021;53(5):917-32. https://doi.org/10.1038/s12276-021-00628-5 DOI: https://doi.org/10.1038/s12276-021-00628-5
Razani B, Zhang H, Schulze PC, Schilling JD, Verbsky J, Lodhi IJ, et al. Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem. 2011;286(35):30949-61. https://doi.org/10.1074/jbc.M111.230508 PMid:21757749 DOI: https://doi.org/10.1074/jbc.M111.230508
Abdalla S, Fu X, Elzahwy SS, Klaetschke K, Streichert T, Quitterer U. Up-regulation of the cardiac lipid metabolism at the onset of heart failure. Cardiovasc Hematol Agents Med Chem. 2011;9(3):190-206. https://doi.org/10.2174/187152511797037583 PMid:21711241 DOI: https://doi.org/10.2174/187152511797037583
Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007;115(10):1275-84. https://doi.org/10.1161/CIRCULATIONAHA.106.663120 PMid:17339547 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.663120
Alla JA, Graemer M, Fu X, Quitterer U. Inhibition of G-protein-coupled receptor kinase 2 prevents the dysfunctional cardiac substrate metabolism in fatty acid synthase transgenic mice. J Biol Chem. 2016;291(6):2583-600. https://doi.org/10.1074/jbc.M115.702688 PMid:26670611 DOI: https://doi.org/10.1074/jbc.M115.702688
Downloads
Published
How to Cite
License
Copyright (c) 2022 Eman Sweed, Dina Sweed, Nader Galal, Huda Ibrahim Abd-Elhafiz (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0