Epilepsy in Stroke as De Novo Independent Nosology Unit – Physiology, Pathogenesis, Histology, Clinical Picture, Diagnosis, and Treatment – A Systematic Review
DOI:
https://doi.org/10.3889/oamjms.2023.10976Keywords:
Post stroke epilepsy, Seizures, Stroke, Diagnostics, TreatmentAbstract
INTRODUCTION: Early seizures are considered complications of stroke, and late seizures are a type of structural epilepsy. If they are separated as a new independent nosology unit, the problem in the diagnostic – treatment approach will be solved.
PHYSIOLOGY: Cerebral blood flow is regulated by local factors such as carbon dioxide and oxygen content. Brain activity is also an important factor in the regulation of the volume speed of the blood – with locally increased neuronal activity, the local blood flow increases. Neurons in the CNS are subject to a variety of effects mediated by membrane receptors of two types – ionotropic and metabotropic.
PATHOGENESIS: Early seizures are due to transient biochemical dysfunctions, while late seizures are due to gliosis changes affecting neuronal excitability.
HISTOLOGY: The highlighted histopathological aspects confirm and support the results of clinical and radiological studies with dead nervous tissue, replaced by numerous newly formed capillaries, and surrounded by lipid-laden macrophages.
CLINICAL PICTURE: This is represented by a complex combination of excitatory epileptic manifestations and residual focal symptoms depending on the localization of the lesion.
LABORATORY DIAGNOSTICS: A very typical group of patients with post-stroke seizures have a high risk of recurrence when some of the studied biomarkers for this are available in the blood. In summary, the additional expanded package of studies of stroke patients should include screening diagnostics for the risk of epileptic seizures, namely: IL-6, IL-1β, TNF, Mg2+, Ca2+, CD40L, and Hsc70. IMAGING: Transient periodic MRI abnormalities have been demonstrated, possibly as a result of cerebral edema induced by seizure activity. Routine MRI in stroke patients is recommended.
TREATMENT: It is possible that rt-PA may increase the risk of early seizures after stroke. Levetiracetam (LEV) as a neuroprotective agent in stroke has been proposed as the drug of first choice, based on safety and efficacy profiles. The usual practice is to treat recurrent early-onset seizures with short-term (3–6 months) treatment with antiepileptic drugs.
CONCLUSIONS: Separation of stroke-epilepsy as a new independent nosology entity will solve the diagnostic-treatment problems in this area by changing the minimum package for laboratory tests, as well as routine MRI in patients with clinical evidence of stroke. LEV is the first-line agent for the treatment of these patients, in combination with correction of registered laboratory parameters.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Hammer GD, McPhee SJ, editors. Pathophysiology of Disease: An Introduction to Clinical Medicine. 6th ed., Vol. 07. New York: McGraw-Hill Medical; 2010.
Somjen G. Ions in the Brain Normal Function, Seizures, and Stroke. New York: Oxford University Press; 2004. p. 167.
Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013;14(5):337-49. https://doi.org/10.1038/nrn3482 PMid:23595016. DOI: https://doi.org/10.1038/nrn3482
Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia. 2006;47(11):1761-74. https://doi.org/10.1111/j.1528-1167.2006.00817.x PMid:17116015. DOI: https://doi.org/10.1111/j.1528-1167.2006.00817.x
Tanaka T, Ihara M. Post stroke epilepsy. Neurochem Int. 2017;107:217-28. https://doi.org/10.1016/j.neuint.2017.02.002 PMid:28202284 DOI: https://doi.org/10.1016/j.neuint.2017.02.002
Menon B, Shorvon SD. Ischaemic stroke in adults and epilepsy. Epilepsy Res. 2009;87(1):1-11. https://doi.org/10.1016/j.eplepsyres.2009.08.007 PMid:19744830 DOI: https://doi.org/10.1016/j.eplepsyres.2009.08.007
Kessler KR, Schnitzler A, Classen J, Benecke R. Reduced inhibition within primary motor cortex in patients with poststroke focal motor seizures. Neurology. 2002;59(7):1028-33. https://doi.org/10.1212/wnl.59.7.1028 PMid:12370457 DOI: https://doi.org/10.1212/WNL.59.7.1028
Sun DA, Sombati S, DeLorenzo RJ. Glutamate injury-induced epileptogenesis in hippocampal neurons an in vitro model of stroke induced “epilepsy”. Stroke. 2001;32(10):2344-50. https://doi.org/10.1161/hs1001.097242 PMid:11588324 DOI: https://doi.org/10.1161/hs1001.097242
Bladin CF, Alexandrov AV, Bellavance A, Bornstein N, Chambers B, Coté R. Seizures after stroke: A prospective multicenter study. Arch Neurol. 2000;57(11):1617-22. https://doi.org/10.1001/archneur.57.11.1617 PMid:11074794 DOI: https://doi.org/10.1001/archneur.57.11.1617
Graham NS, Crichton S, Koutroumanidis M, Wolfe CD, Rudd AG. Incidence and associations of poststroke epilepsy: The prospective South London stroke register. Stroke. 2013;44(3):605-11. https://doi.org/10.1161/STROKEAHA.111.000220 PMid:23370202 DOI: https://doi.org/10.1161/STROKEAHA.111.000220
Chen J, Ye H, Zhang J, Li A, Ni Y. Pathogenesis of seizures and epilepsy after stroke. Acta Epileptologica. 2022;4:2. https://doi.org/10.1186/s42494-021-00068-8 DOI: https://doi.org/10.1186/s42494-021-00068-8
Cuciureanu ID, Hînganu D, Stătescu C, Sava A, Hînganu MV, Turliuc MD, et al. Morpho-functional and radiological approach of poststroke seizures. Rom J Morphol Embryol. 2020;61(2):529-34. https://doi.org/10.47162/RJME.61.2.23 PMid:33544805 DOI: https://doi.org/10.47162/RJME.61.2.23
De Reuck JL. Stroke-related seizures and epilepsy. Neurol Neurochir Pol. 2007;41(2):144-9. PMid:17530577 DOI: https://doi.org/10.17925/ENR.2007.00.02.55
Crabb DW, Edenberg HJ, Bosron WF, Li TK. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989;83(1):314-6. https://doi.org/10.1172/JCI113875 PMid:2562960 DOI: https://doi.org/10.1172/JCI113875
Yang H, Song Z, Yang GP, Zhang BK, Chen M, Wu T, et al. The ALDH2 rs671 polymorphism affects post-stroke epilepsy susceptibility and plasma 4-HNE levels. PLoS One. 2014;9(10):e109634. https://doi.org/10.1371/journal.pone.0109634 PMid:25313998 DOI: https://doi.org/10.1371/journal.pone.0109634
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459-72. https://doi.org/10.1038/s41582-019-0217-x PMid:31263255 DOI: https://doi.org/10.1038/s41582-019-0217-x
Kegler A, Caprara AL, Pascotini ET, Arend J, Gabbi P, Duarte MM, et al. Apoptotic markers are increased in epilepsy patients: A relation with manganese superoxide dismutase Ala16Val polymorphism and seizure type through IL-1β and IL-6 pathways. Biomed Res Int. 2020;2020:6250429. https://doi.org/10.1155/2020/6250429 PMid:32219137 DOI: https://doi.org/10.1155/2020/6250429
Liang M, Zhang L, Geng Z. Advances in the development of biomarkers for poststroke epilepsy. Biomed Res Int. 2021;2021:5567046. https://doi.org/10.1155/2021/5567046 PMid:33959658 DOI: https://doi.org/10.1155/2021/5567046
Tao H, Gong Y, Yu Q, Zhou H, Liu Y. Elevated serum matrix metalloproteinase-9, interleukin-6, hypersensitive C-Reactive protein, and homocysteine levels in patients with epilepsy. J Interferon Cytokine Res. 2020; 40(3):152-8. https://doi.org/10.1089/jir.2019.0137 PMid:31971845 DOI: https://doi.org/10.1089/jir.2019.0137
Jia Q, Jiang F, Ma D, Li J, Wang F, Wang Z. Association between IL-6 and seizure recurrence in patients with the first post-ischemic stroke seizure. Neuropsychiatric Dis Treat. 2020;16:1955-63. https://doi.org/10.2147/NDT.S257870 PMid:32848401 DOI: https://doi.org/10.2147/NDT.S257870
van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: Emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol. 2018;44(1):91-111. https://doi.org/10.1111/nan.12444 PMid:28977690 DOI: https://doi.org/10.1111/nan.12444
Shi LM, Chen RJ, Zhang H, Jiang CM, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst. 2017;33(5):805-11. https://doi.org/10.1007/s00381-017-3359-4 PMid:28236069 DOI: https://doi.org/10.1007/s00381-017-3359-4
De Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: A systematic review and meta analysis. Neurosci Biobehav Rev. 2016;63:177-90. https://doi.org/10.1016/j.neubiorev.2016.02.007 PMid:26877106 DOI: https://doi.org/10.1016/j.neubiorev.2016.02.007
Deng X, Zhang X, Tang B, Liu H, Shen Q, Liu Y, et al. Design, synthesis, and evaluation of dihydrobenzo[cd]indole-6- sulfonamide as TNF-α inhibitors. Front Chem. 2018;6:98. https://doi.org/10.3389/fchem.2018.00098 PMid:29670876 DOI: https://doi.org/10.3389/fchem.2018.00098
Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Köller M, Lorenz R, et al. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res. 2009;86(1):82-8. https://doi.org/10.1016/j.eplepsyres.2009.05.009 PMid:19520550 DOI: https://doi.org/10.1016/j.eplepsyres.2009.05.009
He LY, Hu MB, Li RL, Zhao R, Fan LH, Wang L, et al. The effect of protein-rich extract from Bombyx batryticatus against glutamate-damaged PC12 cells via regulating γ-Aminobutyric acid signaling pathway. Molecules. 2020;25(3):553. https://doi.org/10.3390/molecules25030553 PMid:32012896 DOI: https://doi.org/10.3390/molecules25030553
Shandra AA, Godlevsky LS, Vastyanov RS, Oleinik AA, Konovalenko VL, Rapoport EN, et al. The role of TNF-α in amygdala kindled rats. Neurosci Res. 2002;42(2):147-53. https://doi.org/10.1016/s0168-0102(01)00309-1 PMid:11849734 DOI: https://doi.org/10.1016/S0168-0102(01)00309-1
Lainez S, Schlingmann KP, van der Wijst J, Dworniczak B, van Zeeland F, Konrad M, et al. New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur J Hum Genet. 2014;22(4):497-504. https://doi.org/10.1038/ejhg.2013.178 PMid:23942199 DOI: https://doi.org/10.1038/ejhg.2013.178
Fu CY, Chen SJ, Cai NH, Liu ZH, Zhang M, Wang PC, et al. Increased risk of poststroke epilepsy in Chinese patients with a TRPM6 polymorphism. Neurol Res. 2019;41(4):378-83. https://doi.org/10.1080/01616412.2019.1568755 PMid:30739590 DOI: https://doi.org/10.1080/01616412.2019.1568755
Zhang B, Chen M, Yang H, Wu T, Song C, Guo R. Evidence for involvement of the CD40/CD40L system in post-stroke epilepsy. Neurosci Lett. 2014;567:6-10. https://doi.org/10.1016/j.neulet.2014.03.003 PMid:24657679 DOI: https://doi.org/10.1016/j.neulet.2014.03.003
Abraira L, Giannini N, Santamarina E, Cazorla S, Bustamante A, Quintana M, et al. Correlation of blood biomarkers with early onset seizures after an acute stroke event. Epilepsy Behav. 2020;104(Pt B):106549. https://doi.org/10.1016/j.yebeh.2019.106549 PMid:31677998 DOI: https://doi.org/10.1016/j.yebeh.2019.106549
Eriksson H, Hendén PL, Rentzos A, Pujol-Calderón F, Karlsson JK, Höglund K, et al. Acute symptomatic seizures and epilepsy after mechanical thrombectomy. Epilepsy Behav. 2020;104(Pt B):106520. https://doi.org/10.1016/j.yebeh.2019.106520 PMid:31526644 DOI: https://doi.org/10.1016/j.yebeh.2019.106520
Chen Z, Churilov L, Koome ME, Yan B. Post-stroke seizures is associated with low alberta stroke program early CT score. Cerebrovasc Dis. 2017;43(5-6):259-65. https://doi.org/10.1159/000458449 PMid:28259886 DOI: https://doi.org/10.1159/000458449
Kushwah AP, Kedar K, Pande S. Role of MRI in evaluation of seizures. J Evol Med Dental Sci. 2011;4(105):16977-983. https://doi.org/10.14260/jemds/2015/2564 DOI: https://doi.org/10.14260/jemds/2015/2564
Goulatia RK, Verma A, Mishra NK, Ahuja GK. Disappearing CT lesions in epilepsy. Epilepsia. 1987;28(5):523-7. https://doi.org/10.1111/j.1528-1157.1987.tb03682.x PMid:3653055 DOI: https://doi.org/10.1111/j.1528-1157.1987.tb03682.x
Sammaritano M, Andermann F, Melanson D, Pappius HM, Camfield P, Aicardi J, et al. Prolonged focal cerebral edema associated with partial status epilepticus. Epilepsia. 1985;26(4):334-9. https://doi.org/10.1111/j.1528-1157.1985.tb05659.x PMid:4006892 DOI: https://doi.org/10.1111/j.1528-1157.1985.tb05659.x
Sethi PK, Kumar BR, Madan VS, Mohan V. Appearing and disappearing CT scan abnormalities in seizures. J Neurol Neurosurg Psychiatry. 1985;49(9):866-9. https://doi.org/10.1136/jnnp.48.9.866 PMid:4045480 DOI: https://doi.org/10.1136/jnnp.48.9.866
Cole AJ. Status epilepticus and periictal imaging. Epilepsia. 2004;45(Suppl 4):72-7. https://doi.org/10.1111/j.0013-9580.2004.04014.x PMid:15281962 DOI: https://doi.org/10.1111/j.0013-9580.2004.04014.x
Briellmann RS, Wellard RM, Jackson GD. Seizure associated abnormalities in epilepsy: Evidence from MR imaging. Epilepsia. 2005;46(5):760-6. https://doi.org/10.1111/j.1528-1167.2005.47604.x PMid:15857444 DOI: https://doi.org/10.1111/j.1528-1167.2005.47604.x
Amato C, Elia M, Musumeci SA, Bisceglie P, Moschini M. Transient MRI abnormalities associated with partial status epilepticus: A case report. Eur J Radiol. 2001;38(1):50-4. https://doi.org/10.1016/s0720-048x(00)00284-9 PMid:11287165 DOI: https://doi.org/10.1016/S0720-048X(00)00284-9
Bauer G, Gotwald T, Dobesberger J, Embacher N, Felber S, Bauer R, et al. Transient and permanent magnetic resonance imaging abnormalities after complex partial status epilepticus. Epilepsy Behav. 2006;8(3):666-71. https://doi.org/10.1016/j.yebeh.2006.01.002 PMid:16503204 DOI: https://doi.org/10.1016/j.yebeh.2006.01.002
Chu K, Kang DW, Kim JY, Chang KH, Lee SK. Diffusion weighted magnetic resonance imaging in nonconvulsive status epilepticus. Arch Neurol. 2001;58(6):993-8. https://doi.org/10.1001/archneur.58.6.993 PMid:11405815 DOI: https://doi.org/10.1001/archneur.58.6.993
Kramer RE, Luders H, Lesser RP, Weinstein MR, Dinner DS, Morris HH, et al. Transient focal abnormalities of neuroimaging studies during focal status epilepticus. Epilepsia. 1987;28(5):528-32. https://doi.org/10.1111/j.1528-1157.1987.tb03683.x PMid:3653056 DOI: https://doi.org/10.1111/j.1528-1157.1987.tb03683.x
Senn P, Lovblad KO, Zutter D, Bassetti C, Zeller O, Donati F, et al. Changes on diffusion-weighted MRI with focal motor status epilepticus: Case report. Neuroradiology. 2003;45(4):246-9. https://doi.org/10.1007/s00234-002-0850-7 PMid:12687309 DOI: https://doi.org/10.1007/s00234-002-0850-7
Canas N, Breia P, Soares P, Saraiva P, Calado S, Jordão C, et al. The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities. Epilepsy Res. 2010;91(2-3):240-52. https://doi.org/10.1016/j.eplepsyres.2010.07.019 PMid:20728314 DOI: https://doi.org/10.1016/j.eplepsyres.2010.07.019
Chan S, Chin SS, Kartha K, Nordli DR, Goodman RR, Pedley T, et al. Reversible signal abnormalities in the hippocampus and neocortex after prolonged seizures. AJNR Am J Neuroradiol. 1996;17(9):1725-31. PMid:8896629
Huang YC, Weng HH, Tsai YT, Huang YC, Hsiao MC, Wu CY, et al. Periictal magnetic resonance imaging in status epilecticus. Epilepsy Res. 2009;86(1):72-81. https://doi.org/10.1016/j.eplepsyres.2009.05.011 PMid:19541453 DOI: https://doi.org/10.1016/j.eplepsyres.2009.05.011
Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure. 2009;18(2):104-8. https://doi.org/10.1016/j.seizure.2008.07.004 PMid:18723376 DOI: https://doi.org/10.1016/j.seizure.2008.07.004
Raghavendra S, Ashalatha R, Krishnamoorthy T, Kesavadas C, Thomas SV, Radhakrishnan K. Reversible periictal MRI abnormalities: Clinical correlates and long-term outcome in 12 patients. Epilepsy Res. 2007;73(1):129-36. https://doi.org/10.1016/j.eplepsyres.2006.10.007 PMid:17125968 DOI: https://doi.org/10.1016/j.eplepsyres.2006.10.007
Quan W, Xu Q, Yang F, Chen GH, Lin ZX, Zhang QR, et al. Impairments of gray matter in MRI-negative epileptic patients with different seizure types. Zhonghua Yi Xue Za Zhi. 2017;97(45):3524-8. https://doi.org/10.3760/cma.j.issn.0376-2491.2017.45.002 PMid:29275588
Binnie CD, Prior PE. Electroencephalography. J Neurol Neurosurg Psychiatr 1994;57(11):1308-19. https://doi.org/10.1136/jnnp.57.11.1308 PMid:7964803 DOI: https://doi.org/10.1136/jnnp.57.11.1308
Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 1997;49(1):277-92. https://doi.org/10.1212/wnl.49.1.277 PMid:9222209 DOI: https://doi.org/10.1212/WNL.49.1.277
Alvarez V, Rossetti AO, Papavasileiou V, Michel P. Acute seizures in acute ischemic stroke: Does thrombolysis have a role to play. J Neurology. 2013;260(1):55-61. https://doi.org/10.1007/s00415-012-6583-6 PMid:22743792 DOI: https://doi.org/10.1007/s00415-012-6583-6
Keller L, Hobohm C, Zeynalova S, Classen J, Baum P. Does treatment with t-PA increase the risk of developing epilepsy after stroke. J Neurol. 2015;262(10):2364-72. https://doi.org/10.1007/s00415-015-7850-0 PMid:26205634 DOI: https://doi.org/10.1007/s00415-015-7850-0
De Reuck J, Van Maele G. Acute ischemic stroke treatment and the occurrence of seizures. Clin Neurol Neurosurg. 2010;112(4):328-31. https://doi.org/10.1016/j.clineuro.2010.01.004 PMid:20133048 DOI: https://doi.org/10.1016/j.clineuro.2010.01.004
Van Mook WN, Rennenberg RJ, Schurink GW, van Oostenbrugge RJ, Mess WH, Hofman PA, et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4(12):877-88. https://doi.org/10.1016/S1474-4422(05)70251-9 PMid:16297845 DOI: https://doi.org/10.1016/S1474-4422(05)70251-9
Hafeez F, Razzaq MA, Levine RL, Ramirez MA. Reperfusion seizures: A manifestation of cerebral reperfusion injury after administration of recombinant tissue plasminogen activator for acute ischemic stroke. J Stroke Cerebrovasc Dis. 2007;16(6):273-7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2007.07.007 PMid:18035246 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2007.07.007
Jean WC, Spellman SR, Nussbaum ES, Low WC. Reperfusion injury after focal cerebral ischemia: The role of inflammation and the therapeutic horizon. Neurosurgery. 1998;43(6):1382-96; discussion 1396-7. https://doi.org/10.1097/00006123-199812000-00076 PMid:9848853 DOI: https://doi.org/10.1227/00006123-199812000-00076
Silverman IE, Restrepo L, Mathews GC. Poststroke seizures. Arch Neurol. 2002;59(2):195-201. https://doi.org/10.1001/archneur.59.2.195 PMid:11843689 DOI: https://doi.org/10.1001/archneur.59.2.195
Gilad R, Boaz M, Dabby R, Sadeh M, Lampl Y. Are post intracerebral hemorrhage seizures prevented by antiepileptic treatment. Epilepsy Res. 2011;95(3):227-31. https://doi.org/10.1016/j.eplepsyres.2011.04.002 PMid:21632213 DOI: https://doi.org/10.1016/j.eplepsyres.2011.04.002
Van Tuijl JH, van Raak EP, de Krom MC, Lodder J, Aldenkamp AP. Early treatment after stroke for the prevention of late epileptic seizures: A report on the problems performing a randomised placebo-controlled double-blind trial aimed at anti-epileptogenesis. Seizure. 2011;20(4):285-91. https://doi.org/10.1016/j.seizure.2010.12.012 PMid:21277231 DOI: https://doi.org/10.1016/j.seizure.2010.12.012
Bateman BT, Claassen J, Willey JZ, Hirsch LJ, Mayer SA, Sacco RL, et al. Convulsive status epilepticus after ischemic stroke and intracerebral hemorrhage: Frequency, predictors, and impact on outcome in a large administrative dataset. Neurocrit Care. 2007;7(3):187-93. https://doi.org/10.1007/s12028-007-0056-2 PMid:17503112 DOI: https://doi.org/10.1007/s12028-007-0056-2
Waterhouse EJ, Vaughan JK, Barnes TY, Boggs JG, Towne AR, Kopec-Garnett L, et al. Synergistic effect of status epilepticus and ischemic brain injury on mortality. Epilepsy Res. 1998;29(3):175-83. https://doi.org/10.1016/s0920-1211(97)00071-5 PMid:9551779 DOI: https://doi.org/10.1016/S0920-1211(97)00071-5
Wu YW, Shek DW, Garcia PA, Zhao S, Johnston SC. Incidence and mortality of generalized convulsive status epilepticus in California. Neurology. 2002;58(7):1070-6. https://doi.org/10.1212/wnl.58.7.1070 PMid:11940695 DOI: https://doi.org/10.1212/WNL.58.7.1070
Kim LG, Johnson TL, Marson AG, Chadwick DW, MRC MESS Study group. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: Further results from the MESS trial. Lancet Neurol. 2006;5(4):317-22. https://doi.org/10.1016/S1474-4422(06)70383-0 PMid:16545748 DOI: https://doi.org/10.1016/S1474-4422(06)70383-0
Strzelczyk A, Haag A, Raupach H, Herrendorf G, Hamer HM, Rosenow F. Prospective evaluation of a post-stroke epilepsy risk scale. J Neurol. 2010;257(8):1322-6. https://doi.org/10.1007/s00415-010-5520-9 PMid:20309571 DOI: https://doi.org/10.1007/s00415-010-5520-9
Kim HJ, Park KD, Choi KG, Lee HW. Clinical predictors of seizure recurrence after the first post-ischemic stroke seizure. BMC Neurol. 2016;16(1):212. https://doi.org/10.1186/s12883-016-0729-6 DOI: https://doi.org/10.1186/s12883-016-0729-6
Gilad R, Sadeh M, Rapoport A, Dabby R, Boaz M, Lampl Y. Monotherapy of lamotrigine versus carbamazepine in patients with poststroke seizure. Clin Neuropharmacol. 2007;30(4):189-95. https://doi.org/10.1097/WNF.0b013e3180333069 PMid:17762314 DOI: https://doi.org/10.1097/WNF.0b013e3180333069
Kutlu G, Gomceli YB, Unal Y, Inan LE. Levetiracetam monotherapy for late poststroke seizures in the elderly. Epilepsy Behav. 2008;13:542-4. https://doi.org/10.1016/j.yebeh.2008.04.025 PMid:18539085 DOI: https://doi.org/10.1016/j.yebeh.2008.04.025
Belcastro V, Costa C, Galletti F, Autuori A, Pierguidi L, Pisani F, et al. Levetiracetam in newly diagnosed late-onset post-stroke seizures: A prospective observational study. Epilepsy Res. 2008;82(2-3):223-6. https://doi.org/10.1016/j.eplepsyres.2008.08.008 PMid:18829259 DOI: https://doi.org/10.1016/j.eplepsyres.2008.08.008
Consoli D, Bosco D, Postorino P, Galati F, Plastino M, Perticoni GF, et al. Levetiracetam versus carbamazepine in patients with late poststroke seizures: A multicenter prospective randomized open-label study. Cerebrovasc Dis. 2012;34(4):282-9. https://doi.org/10.1159/000342669 PMid:23128439 DOI: https://doi.org/10.1159/000342669
Huang YH, Chi NF, Kuan YC, Chan L, Hu CJ, Chiou HY, et al. Efficacy of phenytoin, valproic acid, carbamazepine and new antiepileptic drugs on control of lateonset post-stroke epilepsy in Taiwan. Eur J Neurol. 2015;22(11):1459-68. https://doi.org/10.1111/ene.12766 PMid:26148132 DOI: https://doi.org/10.1111/ene.12766
Nilsson L, Bergman U, Diwan V, Farahmand BY, Persson PG, Tomson T. Antiepileptic drug therapy and its management in sudden unexpected death in epilepsy: A case control study. Epilepsia. 2001;42(5):667-73. https://doi.org/10.1046/j.1528-1157.2001.22000.x PMid:11380576 DOI: https://doi.org/10.1046/j.1528-1157.2001.22000.x
Schwarz JR, Bromm B, Ochs G. Phenobarbital induces slow recovery from sodium inactivation at the nodal membrane. Biochim Biophys Acta. 1980;597(2):384-90. https://doi.org/10.1016/0005-2736(80)90114-5 PMid:6245694 DOI: https://doi.org/10.1016/0005-2736(80)90114-5
Siniscalchi A, Gallelli L, Calabro G, Tolotta GA, De Sarro G. Phenobarbital/lamotrigine coadministration-induced blood dyscrasia in a patient with epilepsy. Ann Pharmacother. 2010;44(12):2031-4. https://doi.org/10.1345/aph.1P335 PMid:21098752 DOI: https://doi.org/10.1345/aph.1P335
Siniscalchi A, Gallelli L, De Sarro G, Malferrari G, Santangelo E. Antiepileptic drugs for central post-stroke pain management. Pharmacol Res. 2012;65(2):171-5. https://doi.org/10.1016/j.phrs.2011.09.003 PMid:21925602 DOI: https://doi.org/10.1016/j.phrs.2011.09.003
Kennedy WK, Jann MW, Kutscher EC. Clinically significant drug interactions with atypical antipsychotics. CNS Drugs. 2013;27(12):1021-48. https://doi.org/10.1007/s40263-013-0114-6 PMid:24170642 DOI: https://doi.org/10.1007/s40263-013-0114-6
Landmark CJ, Patsalos PN. Drug interactions involving the new second-and third-generation antiepileptic drugs. Expert Rev Neurother. 2010;10(1):119-40. https://doi.org/10.1586/ern.09.136 PMid:20021326 DOI: https://doi.org/10.1586/ern.09.136
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Christiyan Naydenov, Gospodinka Prakova, Jivka Tsokeva, Julian Ananiev, Coni Ivanova, Velina Mancheva, Lachezar Manchev, Antoaneta Yordanova (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0