Inflammatory Bowel Disease: A focus on the Role of Probiotics in Ulcerative Colitis
DOI:
https://doi.org/10.3889/oamjms.2023.11020Keywords:
IBD, ulcerative colitis (UC),, Crohn’s disease (CD), probioticsAbstract
Inflammatory bowel disease (IBD) is a cluster of disorders of the gastrointestinal tract characterized by chronic inflammation and imbalance of the gut microbiota in a genetically vulnerable host. Crohn’s disease and ulcerative colitis (UC) are well-known types of IBD, and due to its high prevalence, IBD has attracted the attention of researchers globally. The exact etiology of IBD is still unknown; however, various theories have been proposed to provide some explanatory clues that include gene-environment interactions and dysregulated immune response to the intestinal microbiota. These diseases are manifested by several clinical symptoms that depend on the affected segment of the intestine such as diarrhea, abdominal pain, and rectal bleeding. In this era of personalized medicine, various options are developing starting from improved intestinal microecology, small molecules, exosome therapy, to lastly stem cell transplantation. From another aspect, and in parallel to pharmacological intervention, nutrition, and dietary support have shown effectiveness in IBD management. There is an increasing evidence supporting the benefit of probiotics in the prophylaxis and treatment of IBD. There are several studies that have demonstrated that different probiotics alleviate UC. The present review summarizes the progress in the IBD studies focusing and exploring more on the role of probiotics as a potential adjunct approach in UC management.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kawahara M, Nemoto M, Nakata T, Kondo S, Takahashi H, Kimura B, et al. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. Lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice. Int Immunopharmacol. 2015;26(2):295-303. https://doi.org/10.1016/j.intimp.2015.04.004 PMid:25887264 DOI: https://doi.org/10.1016/j.intimp.2015.04.004
Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GA. Nutrition, IBD and gut microbiota: A review. Nutrients. 2020;12(4):E944. https://doi.org/10.3390/nu12040944 PMid:32235316 DOI: https://doi.org/10.3390/nu12040944
Celiberto LS, Bedani R, Dejani NN, de Medeiros AI, Zuanon JA, Spolidorio LC, et al. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLOS One. 2017;12(4):e0175935. https://doi.org/10.1371/journal.pone.0175935 PMid:28437455 DOI: https://doi.org/10.1371/journal.pone.0175935
Ocansey DK, Wang L, Wang J, Yan Y, Qian H, Zhang X, et al. Mesenchymal stem cell-gut microbiota interaction in the repair of inflammatory bowel disease: An enhanced therapeutic effect. Clin Transl Med. 2019;8(1):31. https://doi.org/10.1186/s40169-019-0251-8 PMid:31872304 DOI: https://doi.org/10.1186/s40169-019-0251-8
Ocansey DK, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, et al. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc. 2020;95(5):1287-307. https://doi.org/10.1111/brv.12608 PMid:32410383 DOI: https://doi.org/10.1111/brv.12608
Leccese G, Bibi A, Mazza S, Facciotti F, Caprioli F, Landini P, et al. Probiotic Lactobacillus and Bifidobacterium strains counteract adherent-invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 Axis in ulcerative colitis, but not in crohn’s disease. Cells. 2020;9(8):E1824. https://doi.org/10.3390/cells9081824 PMid:32752244 DOI: https://doi.org/10.3390/cells9081824
Seo DH, Che X, Kim S, Kim DH, Ma HW, Kim JH, et al. Triggering receptor expressed on myeloid cells-1 agonist regulates intestinal inflammation via Cd177+ neutrophils. Front Immunol. 2021;12:619. https://doi.org/10.3389/fimmu.2021.650864 PMid:33767714 DOI: https://doi.org/10.3389/fimmu.2021.650864
Nettleton JE, Klancic T, Schick A, Choo AC, Cheng N, Shearer J, et al. Prebiotic, probiotic, and synbiotic consumption alter behavioral variables and intestinal permeability and microbiota in BTBR mice. Microorganisms. 2021;9(9):1833. https://doi.org/10.3390/microorganisms9091833 PMid:34576728 DOI: https://doi.org/10.3390/microorganisms9091833
Agrawal M, Burisch J, Colombel JF, Shah S. Viewpoint: Inflammatory bowel diseases among immigrants from low-to high-incidence countries: Opportunities and considerations. J Crohns Colitis. 2020;14(2):267-73. https://doi.org/10.1093/ecco-jcc/jjz139 PMid:31359034 DOI: https://doi.org/10.1093/ecco-jcc/jjz139
Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152(2):313-21. https://doi.org/10.1053/j.gastro.2016.10.020 PMid:27793607 DOI: https://doi.org/10.1053/j.gastro.2016.10.020
Huang JG, Aw MM. Pediatric inflammatory bowel disease in Asia: Epidemiology and natural history. Pediatr Neonatol. 2020;61(3):263-71. https://doi.org/10.1016/j.pedneo.2019.12.008 PMid:32005607 DOI: https://doi.org/10.1016/j.pedneo.2019.12.008
Pasquali S, Gronchi A. Neoadjuvant chemotherapy in soft tissue sarcomas: Latest evidence and clinical implications. Ther Adv Med Oncol. 2017;9(6):415-29. https://doi.org/10.1177/1758834017705588 PMid:28607580 DOI: https://doi.org/10.1177/1758834017705588
Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Fölsch UR, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53(5):685-93. https://doi.org/10.1136/gut.2003.025403 PMid:15082587 DOI: https://doi.org/10.1136/gut.2003.025403
Nasef NA, Mehta S, Ferguson LR. Susceptibility to chronic inflammation: An update. Arch Toxicol. 2017;91(3):1131-41. https://doi.org/10.1007/s00204-016-1914-5 PMid:28130581 DOI: https://doi.org/10.1007/s00204-016-1914-5
Magnusson MK, Isaksson S, Öhman L. The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis. Inflammation. 2020;43(2):507-17. https://doi.org/10.1007/s10753-019-01133-8 PMid:31797122 DOI: https://doi.org/10.1007/s10753-019-01133-8
Lepage P, Häsler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227-36. https://doi.org/10.1053/j.gastro.2011.04.011 PMid:21621540 DOI: https://doi.org/10.1053/j.gastro.2011.04.011
Kostovcikova K, Coufal S, Galanova N, Fajstova A, Hudcovic T, Kostovcik M, et al. Diet rich in animal protein promotes pro- inflammatory macrophage response and exacerbates colitis in mice. Front Immunol. 2019;10:919. https://doi.org/10.3389/fimmu.2019.00919 PMid:31105710 DOI: https://doi.org/10.3389/fimmu.2019.00919
Chiba M, Nakane K, Komatsu M. Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease. Perm J. 2019;23:18-107. https://doi.org/10.7812/TPP/18-107 PMid:30624192 DOI: https://doi.org/10.7812/TPP/18-107
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: Implications for pathophysiology and therapeutics. Brain. 2018;141(7):1900-1916. https://doi.org/10.1093/brain/awy131 PMid:29860380 DOI: https://doi.org/10.1093/brain/awy131
Cui Y, Wang Q, Chang R, Zhou X, Xu C. Intestinal barrier function- non-alcoholic fatty liver disease interactions and possible role of gut microbiota. J Agric Food Chem. 2019;67(10):2754-62. https://doi.org/10.1021/acs.jafc.9b00080 PMid:30798598 DOI: https://doi.org/10.1021/acs.jafc.9b00080
Tao J, Li S, Gan RY, Zhao CN, Meng X, Li HB. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr. 2020;60(6):1025-37. https://doi.org/10.1080/10408398.2018.1555789 PMid:30632784 DOI: https://doi.org/10.1080/10408398.2018.1555789
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. https://doi.org/10.1038/nature09944 PMid:21508958 DOI: https://doi.org/10.1038/nature09944
Dalli SS, Uprety BK, Rakshit SK. Industrial production of active probiotics for food enrichment. In: Engineering Foods for Bioactives Stability and Delivery. New York: Springer; 2017. p. 85-118. https://doi.org/10.1007/978-1-4939-6595-3_3 24. McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019;20(2):e77-91. https://doi.org/10.1016/S1470-2045(18)30952-5 PMid:30712808 DOI: https://doi.org/10.1016/S1470-2045(18)30952-5
Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. https://doi.org/10.7717/peerj.7502 PMid:31440436 DOI: https://doi.org/10.7717/peerj.7502
Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr. 2017;57(18):3987-4002. https://doi.org/10.1080/10408398.2016.1203286 PMid:27438132 DOI: https://doi.org/10.1080/10408398.2016.1203286
Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018;9:2247. https://doi.org/10.3389/fmicb.2018.02247 PMid:30319571 DOI: https://doi.org/10.3389/fmicb.2018.02247
Ding RX, Goh W, Wu RN, Yue XQ, Luo X, Khine WW, et al. Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal. 2019;27(3):623-31. https://doi.org/10.1016/j.jfda.2018.12.012 PMid:31324279 DOI: https://doi.org/10.1016/j.jfda.2018.12.012
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565-9. https://doi.org/10.1126/science.aad3369 PMid:27126040 DOI: https://doi.org/10.1126/science.aad3369
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, et al. Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Front Nutr. 2019;6:21. https://doi.org/10.3389/fnut.2019.00021 PMid:30931309 DOI: https://doi.org/10.3389/fnut.2019.00021
Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020;287(5):833-55. https://doi.org/10.1111/febs.15217 PMid:31955527 DOI: https://doi.org/10.1111/febs.15217
Noor SO, Ridgway K, Scovell L, Kemsley EK, Lund EK, Jamieson C, et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterology. 2010;10(1):134. https://doi.org/10.1186/1471-230X-10-134 PMid:21073731 DOI: https://doi.org/10.1186/1471-230X-10-134
Rath S, Rud T, Karch A, Pieper DH, Vital M. Pathogenic functions of host microbiota. Microbiome. 2018;6(1):174. https://doi.org/10.1186/s40168-018-0542-0 PMid:30266099 DOI: https://doi.org/10.1186/s40168-018-0542-0
Pontes RMA, Miszputen SJ, Ferreira-Filho OF, Miranda C, Ferraz MB. Quality of life in patients with inflammatory bowel diseases: translation to Portuguese language and validation of the” Inflammatory Bowel Disease Questionnaire”(IBDQ). Arq. Gastroenterol. 2004;41:137–143. https://doi.org/10.1590/S0004-28032004000200014 DOI: https://doi.org/10.1590/S0004-28032004000200014
Oliveira FM, Emerick APdoC, Soares EG. Epidemiological aspects of inflammatory bowel diseases in the eastern health macroregion of the State of Minas Gerais. Public Science & Health. 2010;15:1031–1037. https://doi.org/10.1590/S1413-81232010000700009 DOI: https://doi.org/10.1590/S1413-81232010000700009
Schierová D, Březina J, Mrázek J, Fliegerová KO, Kvasnová S, Bajer L, et al. Gut microbiome changes in patients with active left-sided ulcerative colitis after fecal microbiome transplantation and topical 5-aminosalicylic acid therapy. Cells. 2020;9(10):2283. https://doi.org/10.3390/cells9102283 PMid:33066233 DOI: https://doi.org/10.3390/cells9102283
Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: A systematic literature review. Clin Ther. 2017;39(11):2216-29. https://doi.org/10.1016/j.clinthera.2017.09.011 PMid:29055500 DOI: https://doi.org/10.1016/j.clinthera.2017.09.011
Pearson C. Inflammatory bowel disease. Clin Adv Nutr. 2004:100(9):86-90.
Bennis M, Tiret E. Surgical management of ulcerative colitis. Langenbecks Arch Surg. 2012;397(1):11-7. https://doi.org/10.1007/s00423-011-0848-x PMid:21922296 DOI: https://doi.org/10.1007/s00423-011-0848-x
Bischoff SC, Escher J, Hébuterne X, Kłęk S, Krznaric Z, Schneider S, et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Nutr Hosp. 2022;39(3):678-703. https://doi.org/10.20960/nh.03857 PMid:35014851 DOI: https://doi.org/10.20960/nh.03857
Critch J, Day AS, Otley A, King-Moore C, Teitelbaum JE, Shashidhar H, et al. Use of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2012;54(2):298-305. https://doi.org/10.1097/MPG.0b013e318235b397 PMid:22002478 DOI: https://doi.org/10.1097/MPG.0b013e318235b397
Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, et al. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol. 2018;24(1):5-14. https://doi.org/10.3748/wjg.v24.i1.5 PMid:29358877 DOI: https://doi.org/10.3748/wjg.v24.i1.5
Kim SW, Kim HM, Yang KM, Kim SA, Kim SK, An MJ, et al. Bifidobacterium lactis inhibits NF-kappaB in intestinal epithelial cells and prevents acute colitis and colitis-associated colon cancer in mice. Inflamm Bowel Dis. 2010;16(9):1514-25. https://doi.org/10.1002/ibd.21262 PMid:20310012 DOI: https://doi.org/10.1002/ibd.21262
Laval L, Martin R, Natividad JN, Chain F, Miquel S, de Maredsous CD, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015;6(1):1-9. https://doi.org/10.4161/19490976.2014.990784 PMid:25517879 DOI: https://doi.org/10.4161/19490976.2014.990784
Jakubczyk D, Leszczyńska K, Górska S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD)-a critical review. Nutrients. 2020;12(7):1973. https://doi.org/10.3390/nu12071973 PMid:32630805 DOI: https://doi.org/10.3390/nu12071973
Palumbo VD, Romeo M, Gammazza AM, Carini F, Damiani P, Damiano G, et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(3):372-7. https://doi.org/10.5507/bp.2016.044 PMid:27623957 DOI: https://doi.org/10.5507/bp.2016.044
Hanning N, Edwinson AL, Ceuleers H, Peters SA, De Man JG, Hassett LC, et al. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review. Ther Adv Gastroenterol. 2021;14:1-31. https://doi.org/10.1177/1756284821993586 PMid:33717210 DOI: https://doi.org/10.1177/1756284821993586
Gu Y, Guo X, Sun S, Che H. High-fat diet-induced obesity aggravates food allergy by intestinal barrier destruction and inflammation. Inter Arch Allergy Immunol. 2021;183:80-92. https://doi.org/10.1159/000517866 PMid:34515121 DOI: https://doi.org/10.1159/000517866
Champagne CP, Ross RP, Saarela M, Hansen KF, Charalampopoulos D. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. Int J Food Microbiol. 2011;149(3):185-93. https://doi.org/10.1016/j.ijfoodmicro.2011.07.005 PMid:21803436 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.07.005
Fedorak RN, Madsen KL. Probiotics and the management of inflammatory bowel disease. Inflamm Bowel Dis. 2004;10(3):286-99. https://doi.org/10.1097/00054725-200405000-00018 PMid:15290926 DOI: https://doi.org/10.1097/00054725-200405000-00018
O’Hara AM, Shanahan F. Mechanisms of action of probiotics in intestinal diseases. ScientificWorldJournal. 2007;7:31-46. https://doi.org/10.1100/tsw.2007.26 PMid:17221140 DOI: https://doi.org/10.1100/tsw.2007.26
Howarth GS. Inflammatory bowel disease, a dysregulated host-microbiota interaction: Are probiotics a new therapeutic option? J Gastroenterol Hepatol. 2008;23(12):1777-9. https://doi.org/10.1111/j.1440-1746.2008.05685.x PMid:19120868 DOI: https://doi.org/10.1111/j.1440-1746.2008.05685.x
Martín R, Chamignon C, Mhedbi-Hajri N, Chain F, Derrien M, Escribano-Vázquez U, et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep. 2019;9(1):5398. https://doi.org/10.1038/s41598-019-41738-5 PMid:30931953
Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, et al. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One. 2012;7(12):e52493. https://doi.org/10.1371/journal.pone.0052493 PMid:23300685 DOI: https://doi.org/10.1371/journal.pone.0052493
Martín R, Chamignon C, Mhedbi-Hajri N, Chain F, Derrien M, Escribano-Vázquez U, Garault P, Cotillard A, Pham HP, Chervaux C, Bermúdez-Humarán LG, Smokvina T, Langella P. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep. 2019;9(1):5398. https://doi.org/10.1038/s41598-019-41738-5 DOI: https://doi.org/10.1038/s41598-019-41738-5
Chen CL, Hsu PY, Pan TM. Therapeutic effects of Lactobacillus paracasei subsp. paracasei NTU 101 powder on dextran sulfate sodium-induced colitis in mice. J Food Drug Anal. 2019;27(1):83-92. https://doi.org/10.1016/j.jfda.2018.05.004 DOI: https://doi.org/10.1016/j.jfda.2018.05.004
Yan S, Yang B, Zhao J, Zhao J, Stanton C, Ross RP, Chen W. A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct. 2019;10(3):1595-1608. https://doi.org/10.1039/C9FO00014C DOI: https://doi.org/10.1039/C9FO00014C
Chen X, Zhao X, Wang H, Yang Z, Li J, Suo H. Prevent effects of Lactobacillus fermentum HY01 on dextran sulfate sodium- induced colitis in mice. Nutrients. 2017;9(6):545. https://doi.org/10.3390/nu9060545 DOI: https://doi.org/10.3390/nu9060545
Hu T, Wang H, Xiang C, Mu J, Zhao X. Preventive effect of Lactobacillus acidophilus XY27 on DSS-induced ulcerative colitis in mice. Drug Des Devel Ther. 2020;14:5645. doi: HYPERLINK “https://dx.doi.org/10.2147%2FDDDT.S284422”10.2147/DDDT. S284422 DOI: https://doi.org/10.2147/DDDT.S284422
Qian Y, Yi R, Sun P, Li G, Zhao X. Lactobacillus plantarum YS2 reduces oxazolone-induced colitis in BALB/c mice. Biomed Res. 2017;28(21):0970-938. https://www.biomedres.info/abstract/lactobacillus-plantarum-ys2-reduces-oxazoloneinduced-colitis- in-balbc-mice-9238.html
Feng X, Zhang J, Qian Y, Yi R, Sun P, Mu J, Zhao X, Song JL. Preventative effects of Lactobacillus plantarum YS-3 on oxazolone-induced BALB/c colitis in mice. Appl Biol Chem. 2018;61(3):355-363. https://doi.org/10.1007/s13765-018-0359-3 DOI: https://doi.org/10.1007/s13765-018-0359-3
Singh S, Bhatia R, Khare P, Sharma S, Rajarammohan S, Bishnoi M, Bhadada SK, Sharma SS, Kaur J, Kondepudi KK. Anti-inflammatory Bifidobacterium strains prevent dextran sodium sulfate induced colitis and associated gut microbial dysbiosis in mice. Sci Rep. 2020;10(1):18597. https://doi.org/10.1038/s41598-020-75702-5 DOI: https://doi.org/10.1038/s41598-020-75702-5
Abrantes FA, Nascimento BB, Andrade MER, de Barros PAV, Cartelle CT, Martins FS, Cardoso VN. Treatment with Bifidobacterium longum 51A attenuates intestinal damage and inflammatory response in experimental colitis. Beneficial Microbes. 2020;11(1):47-57. https://doi.org/10.3920/ BM2019.0098. DOI: https://doi.org/10.3920/BM2019.0098
Chen X, Fu Y, Wang L, Qian W, Zheng F, Hou X. Bifidobacterium longum and VSL# 3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Dev Comp Immunol. 2019;92:77-86. https://doi.org/10.1016/j.dci.2018.09.006 DOI: https://doi.org/10.1016/j.dci.2018.09.006
Choi EJ, Lee HJ, Kim WJ, Han KI, Iwasa M, Kobayashi K, Kim EK. Enterococcus faecalis EF-2001 protects DNBS- induced inflammatory bowel disease in mice model. Plos One. 2019;14(2):e0210854. https://doi.org/10.1371/journal. pone.0210854 DOI: https://doi.org/10.1371/journal.pone.0210854
Zhang J, Chen X, Song JL, Qian Y, Yi R, Mu J, Yang Z. Preventive effects of Lactobacillus plantarum CQPC07 on colitis induced by dextran sodium sulfate in mice. Food Sci Technol Res. 2019;25(3):413-423. https://doi.org/10.3136/fstr.25.413 DOI: https://doi.org/10.3136/fstr.25.413
Li G, Long X, Pan Y, Meng X, Zhao X. Colitis reducing effects of Lactobacillus plantarum YS-4 in dextran sulfate sodium- induced C57BL/6J mice. Biomed Res. 2018;29(4):768–774. DOI:HYPERLINK “http://dx.doi.org/10.1111/jfbc.13632”10.1111/ jfbc.13632. DOI: https://doi.org/10.4066/biomedicalresearch.29-17-3436
Jang SE, Jeong JJ, Kim JK, Han MJ, Kim DH. Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci Rep. 2018;8(1):1-14. https://doi.org/10.1038/s41598-018-25775-0 DOI: https://doi.org/10.1038/s41598-018-25775-0
Kwon EK, Kang GD, Kim WK, Han MJ, Kim DH. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate ethanol-induced gastritis and hepatic injury in mice. J Funct Foods. 2017; 38:389-398. https://doi.org/10.1016/j.jff.2017.09.036 DOI: https://doi.org/10.1016/j.jff.2017.09.036
Gholami M, Ghasemi-Niri SF, Maqbool F, Baeeri M, Memariani Z, Pousti I, Abdollahi M. Experimental and pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model. Pathology-Research and Practice. 2016;212(6):500-508. https://doi.org/10.1016/j.prp.2016.02.024 DOI: https://doi.org/10.1016/j.prp.2016.02.024
Ahl D, Liu H, Schreiber O, Roos S, Phillipson M, Holm L. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta Physiol. 2016;217(4):300-310. https://doi.org/10.1111/apha.12695
Ahl D, Liu H, Schreiber O, Roos S, Phillipson M, Holm L. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta Physiol. 2016;217(4):300-10. https://doi.org/10.1111/apha.12695 PMid:27096537 DOI: https://doi.org/10.1111/apha.12695
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Ashwag Alzahrani, Abdullah Jaman Alzahrani , Amal Bakr Shori (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0