Interrelationship of Extended Spectrum Beta-Lactamase Producers and Biofilm Formation among the Gram-Negative Bacteria from Tabuk, KSA

Authors

DOI:

https://doi.org/10.3889/oamjms.2023.11101

Keywords:

Biofilm, Clinical Bacterial Pathogens, Escherichia coli, Extended Spectrum Beta Lactamase, In Vitro Inhibition

Abstract

AIM: The present study investigates the production of extended-spectrum beta-lactamases (ESBL) and the formation of biofilm among different bacterial pathogens.

METHODS: The study conducted prospective analysis on bacteria isolates (Gram-negative) from patients who have diagnosed with infections with bacteria between October 2020 and January 2022.

RESULTS: The results showed that there were 53 biofilm producers in Escherichia coli. In contrast, Pseudomonas aeruginosa was observed to have the highest percentage, with 32/40 (80%) isolates being biofilm producers. The least number of isolates were Morganella morganii (n = 2) with two (100%) biofilm producers. The resistance in the biofilm positive isolates was high compared with biofilm negative. About 88% of phenotypic ESBL-positive isolates were biofilm producers, and 97% of cefotaxime-resistant biofilm-positive isolates were genotypic positive for CTX-M, TEM, and SHV genes.

CONCLUSION: The present study has shown that protection against antibiotics through mucus production is possible due to bacteria’s reduced metabolic activity and diffusion of antibiotics across the biofilm matrix. In this study, all the bacterial strains of E. coli and Klebsiella pneumoniae were reported to be MDR and competent for establishing biofilm.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Yılmaz ES, Güvensen NC. In vitro biofilm formation in ESBL- producing Escherichia coli isolates from cage birds. Asian Pac J Trop Med. 2016;9(11):1069-74. https://doi.org/10.1016/j.apjtm.2016.10.003 PMid:27890366 DOI: https://doi.org/10.1016/j.apjtm.2016.10.003

Hasan B, Islam K, Ahsan M, Hossain Z, Rashid M, Talukder B, et al. Fecal carriage of multi-drug resistant and extended- spectrum β-lactamases producing E. coli in household pigeons, Bangladesh. Vet Microbiol. 2014;168(1):221-4. https://doi.org/10.1016/j.vetmic.2013.09.033 PMid:24290770 DOI: https://doi.org/10.1016/j.vetmic.2013.09.033

Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AE, Irie Y, et al. Role of multicellular aggregates in biofilm formation. mBio. 2016;7(2):e00237. https://doi.org/10.1128/mbio.00237-16 PMid:27006463 DOI: https://doi.org/10.1128/mBio.00237-16

Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: Combatting bacterial resistance in cells and biofilm communities. Molecules. 2015;20:5286-98. https://doi.org/10.3390/molecules20045286 PMid:25812150 DOI: https://doi.org/10.3390/molecules20045286

Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016;291(24):12547-55. https://doi.org/10.1074/jbc.r115.711507 PMid:27129226 DOI: https://doi.org/10.1074/jbc.R115.711507

Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649-69. https://doi.org/10.1093/femsre/fuv015 PMid:25907113 DOI: https://doi.org/10.1093/femsre/fuv015

Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of gram-negative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes. 2019;12(1):38. https:/doi.org/10.1186/s13104-019-4084-8 PMid:30658694 DOI: https://doi.org/10.1186/s13104-019-4084-8

Shrestha LB, Bhattarai NR, Khanal B. Comparative evaluation of methods for the detection of biofilm formation in coagulase- negative staphylococci and correlation with antibiogram. Infect Drug Resist. 2018;11:607-13. https://doi.org/10.2147/idr.s159764 PMid:29731649 DOI: https://doi.org/10.2147/IDR.S159764

Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019;8:39. https://doi.org/10.1186/s13756-019-0488-4 PMid:30815254 DOI: https://doi.org/10.1186/s13756-019-0488-4

De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2019;33(3):e00181-19. https://doi.org/10.1128/CMR.00181-19 PMid:32404435 DOI: https://doi.org/10.1128/CMR.00181-19

Zhao Y, Zhang X, Torres VV, Liu H, Rocker A, Zhang Y, et al. An outbreak of carbapenem-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a major teaching hospital in Wenzhou, China. Front Public Health. 2019;7:229. https://doi.org/10.3389/fpubh.2019.00229 PMid:31552210 DOI: https://doi.org/10.3389/fpubh.2019.00229

Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: An emerging crisis. Interdiscip Perspect Infect Dis. 2014;2014:541340. https://doi.org/10.1155/2014/541340 PMid:25140175 DOI: https://doi.org/10.1155/2014/541340

Mohamed A, Rajaa AM, Khalid Z, Fouad M, Naima R. Comparison of three methods for the detection of biofilm formation by clinical isolates of Staphylococcus aureus isolated in Casablanca. Int J Sci Res. 2016;5:1156-9. https://doi.org/10.21275/ART20162319

Bharathi MJ, Ramakrishnan R, Shivakumar C, Meenakshi R, Lionalraj D. Etiology and antibacterial susceptibility pattern of community-acquired bacterial ocular infections in a tertiary eye care hospital in south India. Indian J Ophthalmol. 2010;58(6):497-507. https:/doi.org/10.4103/0301-4738.71678 PMid:20952834 DOI: https://doi.org/10.4103/0301-4738.71678

Hemachandran K, Bharathi S, Radhakrishnan M, Balagurunathan R. Studies on extended beta lactamase producing, biofilm forming clinical bacterial pathogens and it’s invitro inhibition by actinobacterial extracts. J Appl Pharm Sci. 2011;1:210-3.

Shahid M, Ensor VM, Hawkey PM. Emergence and dissemination of Enterobacteriaceae with plasmid-mediated CMY-6 and CTX-M-15 beta-lactamases in community in North India. World J Microbiol Biotechnol. 2009;25:1439-46. https:/ doi.org/10.1007/s11274-009-0032-4 DOI: https://doi.org/10.1007/s11274-009-0032-4

Shahid M, Malik A, Adil M, Jahan N, Malik R. Comparison of beta-lactamase genes in clinical and food bacterial isolates in India. J Infect Dev Ctries. 2009;3(8):593-8. https://doi.org/10.3855/jidc.550 Mid:19801801 DOI: https://doi.org/10.3855/jidc.550

Zubair M, Malik A, Ahmad J, Rizvi M, Farooqui KJ, Rizvi MW. A study of biofilm production by gram-negative organisms isolated from diabetic foot ulcer patients. Biol Med. 2011;3(2):147-57.

Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: An overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x PMid:17696944 DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram- negative bacteria causing urinary tract infections: A review. J Chemother. 2017;29(Sup 1):2-9. https://doi.org/10.1080/1120009x.2017.1380395 PMid:29271736 DOI: https://doi.org/10.1080/1120009X.2017.1380395

Singh NP, Goyal R, Manchanda V, Das S, Kaur I, Talwar V. Changing trends in bacteriology of burns in the burns unit, Delhi, India. Burns. 2003;29(2):129-32. https://doi.org/10.1016/S0305-4179(02)00249-8 PMid:12615458 DOI: https://doi.org/10.1016/S0305-4179(02)00249-8

SPILF. Diagnostic et Antibiothérapie des Infections Urinaires Bactériennes Communautaires de L’adulte. Paris: SPILF; 2015. p.1-43.

Behzadi P, Urban E, Matuz M, Benko R, Gajdacs M. The role of gram-negative bacteria in urinary tract infections: Current concepts and therapeutic options. Adv Exp Med Biol. 2020;1323:35-69. https://doi.org/10.1007/5584_2020_566 PMid:32596751 DOI: https://doi.org/10.1007/5584_2020_566

Schaumburg F, Alabi A, Kokou C. High burden of extended- spectrum beta-lactamase-producing Enterobacteriaceae in Gabon. J Antimicrob Chemother. 2013;68(9):2140-3. https:/doi.org/10.1093/jac/dkt164 PMid:23645586 DOI: https://doi.org/10.1093/jac/dkt164

Yala JF, Mabika R, Bisseye C. Phenotypic and genotypic characterization of extended-spectrum-beta-lactamases producing-Enterobacteriaceae (ESBLE) in patients attending Omar Bongo Ondimba military hospital at Libreville (Gabon). J Mol Microbiol Biotechnol. 2016;4(6):944-9.

World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization; 2014.

Leopold SJ, van Leth F, Tarekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: A systematic review. J Antimicrob Chemother. 2014;69(9):2337-53. https://doi.org/10.1093/jac/ dku176 PMid:24879668 DOI: https://doi.org/10.1093/jac/dku176

Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (When) might we still consider treating with carbapenems? Clin Microbiol Infect. 2011;17(8):1135-41. https://doi.org/10.1111/j.1469-0691.2011.03553.x PMid:21635663 DOI: https://doi.org/10.1111/j.1469-0691.2011.03553.x

Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: A prospective evaluation. Clin Microbiol Infect. 2010;16(2):184-6. https://doi.org/10.1111/j.1469-0691.2009.02921.x PMid:19694767 DOI: https://doi.org/10.1111/j.1469-0691.2009.02921.x

Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): An emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65(6):1119-25. https://doi.org/10.1093/jac/dkq108 PMid:20378670 DOI: https://doi.org/10.1093/jac/dkq108

Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment outcome of bacteremia due to KPC- producing Klebsiella pneumoniae: Superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56(4):2108-13. https://doi.org/10.1128/AAC.06268-11 PMid:22252816 DOI: https://doi.org/10.1128/AAC.06268-11

Gellatly SL, Hancock RE. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159-73. https://doi.org/10.1111/2049-632X.12033 PMid:23620179 DOI: https://doi.org/10.1111/2049-632X.12033

Sahu MC, Patnaik R, Padhy RN. In vitro combinational efficacy of ceftriaxone and leaf extract of Combretum albidum G. Don against multidrug-resistant Pseudomonas aeruginosa and host-toxicity testing with lymphocytes from human cord blood. J Acute Med. 2014;4:26-37. https://doi.org/10.1016/j.jacme.2014.01.004 DOI: https://doi.org/10.1016/j.jacme.2014.01.004

AFT Pharmaceuticals Side Effects of Ceftriaxone. 2011. Available from: https://www.medsafe.govt.nz/Profs/Datasheet/c/ceftriaxoneaftinj.pdf [Last accessed on 2021 Sep 24].

Abdullah FE, Mushtaq A, Irshad M, Rauf H, Afzal N, Rasheed A. Current efficacy of antibiotics against Klebsiella isolates from urine samples-a multi-centric experience in Karachi. Pak J Pharm Sci. 2013;26(1):11-5. PMid:23261722

Fung-Tomc J, Minassian B, Kolek B, Washo T, Huczko E, Bonner D. In vitro antibacterial spectrum of a new broad- spectrum 8-methoxy fluoroquinolone, Gatifloxacin. J Antimicrob Chemother. 2000;45:437-46. https://doi.org/10.1093/jac/45.4.437 PMid:10747819 DOI: https://doi.org/10.1093/jac/45.4.437

National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically.4th ed. Approved Standard M7-A4. Villanova, PA: NCCLS; 1997.

Vahaboglu H, Budak F, Kasap M, Gacar G, Torol S, Karadenizli A, et al. High prevalence of OXA-51-type class D β-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: Co-existence with OXA-58 in multiple centres. J Antimicrob Chemother. 2006;58:537-42. https://doi.org/10.1093/jac/dkl273 PMid:16816400 DOI: https://doi.org/10.1093/jac/dkl273

Colodner R, Rock W, Chazan B, Sakran W. Risk factors for developing extended-spectrum beta-lactamase-producing bacteria in non-hospitalized patients. Eur J Clin Microbiol Infect Dis. 2004;23(3):163-7. https://doi.org/10.1016/j.ijantimicag.2004.06.001 PMid:14986159 DOI: https://doi.org/10.1007/s10096-003-1084-2

Pfaller M, Davenport D, Bale M, Barrett M, Koontz F, Massanari RM. Development of the quantitative micro-test for slime production by coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis. 1998;7(1):30-3. https://doi.org/10.1007/ bf01962167 PMid:3132372 DOI: https://doi.org/10.1007/BF01962167

Sharma M, Yadav S, Chaudhary U. Biofilm production in uropathogenic Escherichia coli. Indian J Pathol Microbiol. 2009;52(2):294. https://doi.org/10.4103/0377-4929.48960 PMid:19332956 DOI: https://doi.org/10.4103/0377-4929.48960

Poovendran P, Vidhya N, Murugan S. Antimicrobial susceptibility pattern of ESBL and non-ESBL producing uropathogenic Escherichia coli (UPEC) and their correlation with biofilm formation. Intl J Microbiol Res. 2013;4:56-63. https://doi. org/10.5829/idosi.ijmr.2013.4.1.7123

Ehlers MM, Veldsman C, Makgotlho EP, Dove MG, Hoosen AA, Kock MM. Detection of blaSHV , blaTEM and blaCTX-M antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. FEMS Immunol Med Microbiol. 2009;56(3):191-6. https://doi.org/10.1111/j.1574-695X PMid:19453751 DOI: https://doi.org/10.1111/j.1574-695X.2009.00564.x

Downloads

Published

2023-01-02

How to Cite

1.
Zubair M, Mohammad I. Interrelationship of Extended Spectrum Beta-Lactamase Producers and Biofilm Formation among the Gram-Negative Bacteria from Tabuk, KSA. Open Access Maced J Med Sci [Internet]. 2023 Jan. 2 [cited 2024 May 4];11(A):15-22. Available from: https://oamjms.eu/index.php/mjms/article/view/11101

Similar Articles

You may also start an advanced similarity search for this article.