Finite Element Study to Evaluate the Stress Around Mini-implant during Canine Retraction using Continuous and Interrupted Orthodontic Forces

Authors

  • Hend Ghorab Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt https://orcid.org/0000-0002-5038-7181
  • Ahmed A. F. Ramadan Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
  • Mohamed A. Nadim Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
  • Tarek Sharaf Department of Civil Engineering, Faculty of Engineering, Port Said University, Port Fuad, Egypt

DOI:

https://doi.org/10.3889/oamjms.2023.11122

Keywords:

Canine retraction, Stress, Mini-implant, Coil spring, Elastic chain, Finite element analysis

Abstract

Abstract:

Objectives: This work aimed to determine the stress distribution around a mini-implant during dynamic canine retraction utilizing continuous and intermittent orthodontic forces and a three-dimensional finite element model.

Materials and Methods: Establishing a three-dimensional finite element model of canine retraction. The model incorporates a mini-implant, alveolar bone, maxillary teeth, a closed coil spring, and an elastic chain. They were described as being homogeneous, isotropic, and linear elastic. Continuous and interrupted forces were approximated by a NiTi coil spring and an elastic chain, respectively. To retract the canine, a simulated orthodontic force of 1.5N, 2N, and 2.5N were loaded. ANSYS evaluated the value of the stress distribution around the mini-implant, canine, and bone interface (workbench 19).

Results indicated that there was no significant difference between the values of maximum stress around the miniscrew, canine, and bone under different orthodontic loads when a closed coil spring and an elastic chain were evaluated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Viwattanatipa N, Thanakitcharu S, Uttraravichien A, Pitiphat W. Survival analyses of surgical miniscrews as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2009;136(1):29-36. https://doi.org/10.1016/j.ajodo.2007.06.018 PMid:19577145 DOI: https://doi.org/10.1016/j.ajodo.2007.06.018

Pan CY, Chou ST, Tseng YC, Yang YH, Wu CY, Lan TH, et al. Influence of different implant materials on the primary stability of orthodontic mini-implants. Kaohsiung J Med Sci. 2012;28(12):673-8. https://doi.org/10.1016/j.kjms.2012.04.037 PMid:23217360 DOI: https://doi.org/10.1016/j.kjms.2012.04.037

Sharma R, Mittal AK, Sidana A, Tiwari P. Canine retraction in orthodontics: A review of various methods. Med Res Chron. 2015;2(1):83-93.

Singh JR, Kambalyal P, Jain M, Khandelwal P. Revolution in orthodontics: Finite element analysis. J Int Soc Prev Community Dent. 2016;6(2):110-4. https://doi.org/10.4103/2231-0762.178743 PMid:27114948 DOI: https://doi.org/10.4103/2231-0762.178743

Hamanaka R, Yamaoka S, Anh TN, Tominage JY, Koga Y, Yoshida N. Numerical simulation model for long-term orthodontic tooth movement with contact boundary condition using the finite element method. Am J Orthod Dentofacial Orthop. 2017;152(5):601-12. https://doi.org/10.1016/j.ajodo.2017.03.021 PMid:29103438 DOI: https://doi.org/10.1016/j.ajodo.2017.03.021

Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ. Miniscrews in orthodontic treatment: Review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop. 2010;137(1):108-13. https://doi.org/10.1016/j.ajodo.2008.01.027 PMid:20122438 DOI: https://doi.org/10.1016/j.ajodo.2008.01.027

Sivamurthy G, Sundari S. Stress distribution patterns at mini-implant site during retraction and intrusion-a three-dimensional finite element study. Prog Orthod. 2016;17:4. https://doi.org/10.1186/s40510-016-0117-1 PMid:26780464 DOI: https://doi.org/10.1186/s40510-016-0117-1

Singh S, Mogra S, Shetty VS, Shetty S, Philip P. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: A conical, self-drilling miniscrew implant system. Am J Orthod Dentofacial Orthop. 2012;141(3):327-36. https://doi.org/10.1016/j.ajodo.2011.07.022 PMid:22381493 DOI: https://doi.org/10.1016/j.ajodo.2011.07.022

Yee JA, Türk T, Elekdağ-Türk S, Cheng LL, Darendeliler MA. Rate of tooth movement under heavy and light continuous orthodontic forces. Am J Orthod Dentofacial Orthop. 2009;136(2):150.e1-9; discussion 150-1. https://doi.org/10.1016/j.ajodo.2009.03.026 PMid:19651334 DOI: https://doi.org/10.1016/j.ajodo.2008.06.027

Cox C, Nguyen T, Koroluk L, Ko CC. In-vivo force decay of nickel-titanium closed-coil springs. Am J Orthod Dentofacial Orthop. 2014;145(4):505-13. https://doi.org/10.1016/j.ajodo.2013.12.023 DOI: https://doi.org/10.1016/j.ajodo.2013.12.023

Chaudhari CV, Tarvade SM. Comparison of rate of retraction and anchorage loss using nickel titanium closed coil springs and elastomeric chain during the en-masse retraction: A clinical study. J Orthod Res. 2015;3:129-33. https://doi.org/10.4103/2321-3825.150582 PMid:24703289 DOI: https://doi.org/10.4103/2321-3825.150582

Al-Suleiman M, Shehadah M. Comparison of two methods for canine retraction depending on direct skeletal anchorage system. Int J Dent Oral Health. 2015;1(1):21-32. https://doi.org/10.25141/2471-657X-2015-1.0007 DOI: https://doi.org/10.25141/2471-657X-2015-1.0007

Mohammed H, Rizk MZ, Wafaie K, Almuzian M. Effectiveness of nickel-titanium springs vs elastomeric chains in orthodontic space closure: A systematic review and meta-analysis. Orthod Craniofac Res. 2018;21(1):12-9. https://doi.org/10.1111/ocr.12210 PMid:29265578 DOI: https://doi.org/10.1111/ocr.12210

Han S, Quick DC. Nickel-titanium spring properties in a simulated oral environment. Angle Orthod. 1993;63(1):67-72. https://doi.org/10.1043/0003-3219(1993)063<0067:NSPIAS>2. 0.CO;2 PMid:8507034

Tominaga JY, Ozaki H, Chiang PC, Sumi M, Tanaka M, Koga Y, et al. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: A 3-dimensional finite element study. Am J Orthod Dentofacial Orthop. 2014;146(2):166-74. https://doi.org/10.1016/j.ajodo.2014.04.016 PMid:25085299 DOI: https://doi.org/10.1016/j.ajodo.2014.04.016

Lin TS, Tsai FD, Chen CY, Lin LW. Factorial analysis of variable affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite element analysis. Am J Orthod Dentofacial Orthop. 2013;143(2):182-9. https://doi.org/10.1016/j.ajodo.2012.09.012 PMid:23374924 DOI: https://doi.org/10.1016/j.ajodo.2012.09.012

Maganzini AL, Wong AM, Ahmed MK. Forces of various nickel titanium closed coil springs. Angle Orthod. 2010;80(1):182-7. https://doi.org/10.2319/011509-592.1 PMid:19852659 DOI: https://doi.org/10.2319/011509-592.1

Shu R, Huang L, Bai D. Adult class II division 1 patient with sever gummy smile treated with temporary anchorage devices. Am J Orthod Dentofacial Orthop. 2011;140(1):97-105. https://doi.org/10.1016/j.ajodo.2011.01.021 PMid:21724093 DOI: https://doi.org/10.1016/j.ajodo.2011.01.021

Sung SJ, Jang GW, Chun YS, Moon YS. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis. Am J Orthod Dentofacial Orthop. 2010;137(5):648-57. https://doi.org/10.1016/j.ajodo.2008.06.036 PMid:20451784 DOI: https://doi.org/10.1016/j.ajodo.2008.06.036

Suzuki A, Masuda T, Takahashi I, Deguchi T, Suzuki O, Takano-Yamamoto T. Changes in stress distribution of orthodontic miniscrews and surrounding bone evaluated by 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop. 2011;140(6):e273-80. https://doi.org/10.1016/j.ajodo.2011.06.025 PMid:22133961 DOI: https://doi.org/10.1016/j.ajodo.2011.06.025

Hedayati Z, Shomali M. Maxillary anterior en masse retraction using different antero-posterior position of miniscrew: A 3D finite element study. Prog Orthod. 2016;17:31. https://doi.org/10.1186/s40510-016-0143-z PMid:27667816 DOI: https://doi.org/10.1186/s40510-016-0143-z

Alrbata RH, Momani MQ, Al-Tarawneh AM, Ihyasat A. Optimal force magnitude loaded to orthodontic microimplants: A finite element analysis. Angle Orthod. 2016;86(2):221-6. https://doi.org/10.2319/031115-153.1 PMid:26098865 DOI: https://doi.org/10.2319/031115-153.1

Kojima Y, Fukui H, Miyajima K. The effects of friction and flexural rigidity of the archwire on canine movement in sliding mechanics: A numerical simulation with a 3-dimensional finite element method. Am J Orthod Dentofacial Orthop. 2006;130(3):275. e1-10. https://doi.org/10.1016/j.ajodo.2006.02.030 PMid:16979481 DOI: https://doi.org/10.1016/j.ajodo.2006.02.030

Antoszewska-Smith J, Sarul M, Łyczek J, Konopka T, Kawala B. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: A systematic review and meta-analysis. Am J Orthod Dentofacial Orthop. 2017;151(3):440-55. https://doi.org/10.1016/j.ajodo.2016.08.029 PMid:28257728 DOI: https://doi.org/10.1016/j.ajodo.2016.08.029

Upadhyay M, Yadav S, Patil S. Mini-implant anchorage for en-masse retraction of maxillary anterior teeth: A clinical cephalometric study. Am J Orthod Dentofacial Orthop. 2008;134(6):803-10. https://doi.org/10.1016/j.ajodo.2006.10.025 PMid:19061808 DOI: https://doi.org/10.1016/j.ajodo.2006.10.025

Upadhyay M, Yadav S, Nagaraj K, Patil S. Treatment effects of mini-implants for en-masse retraction of anterior teeth in bialveolar dental protrusion patients: A randomized controlled trial. Am J Orthod Dentofacial Orthop. 2008;134(1):18-29.e1. https://doi.org/10.1016/j.ajodo.2007.03.025 PMid:18617099 DOI: https://doi.org/10.1016/j.ajodo.2007.03.025

Kuroda S, Yamada K, Deguchi T, Kyung HM, Takano- Yamamoto T. Class II malocclusion treated with miniscrew anchorage: Comparison with traditional orthodontic mechanics outcomes. Am J Orthod Dentofacial Orthop. 2009;135(3):302-9. https://doi.org/10.1016/j.ajodo.2007.03.038 PMid:19268827 DOI: https://doi.org/10.1016/j.ajodo.2007.03.038

Yang CH, Wang C, Deng F, Fan Y. Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: A 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop. 2015;148(3):457-65. https://doi.org/10.1016/j.ajodo.2015.03.032 PMid:26321344 DOI: https://doi.org/10.1016/j.ajodo.2015.03.032

Chang JZ, Chen YJ, Tung YY, Chiang YY, Lai EH, Chen WP, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop. 2012;141(3):279-88. https://doi.org/10.1016/j.ajodo.2011.09.008 PMid:22381488 DOI: https://doi.org/10.1016/j.ajodo.2011.09.008

Ajami S, Mina A, Nabavizadeh SA. Stress distributions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis. J Orthod Sci. 2016;5(2):64-9. https://doi.org/10.4103/2278-0203.179416 PMid:27127753 DOI: https://doi.org/10.4103/2278-0203.179416

Jiang L, Kong L, Li T, Gu Z, Hou R, Duan Y. Optimal selections of orthodontic mini-implant diameter and length by biomechanical consideration: A three-dimensional finite element analysis. Adv Eng Softw. 2009;40(11):1124-30. https://doi.org/10.1016/j.advengsoft.2009.05.008 DOI: https://doi.org/10.1016/j.advengsoft.2009.05.008

Samuels RH, Rudge SJ, Mair LH. A clinical study of space closure with nickel-titanium closed coil springs and an elastic module. Am J Orthod Dentofacial Orthop. 1998;114(1):73-9. https://doi.org/10.1016/s0889-5406(98)70241-0 PMid:9674684 DOI: https://doi.org/10.1016/S0889-5406(98)70241-0

Talwar A, Bhat SR. Comparative evaluation of nickel-titanium closed coil spring and elastomeric chain for canine retraction. A randomized clinical trial. IOSR J Dent Med Sci. 2018;17(10):70-5. https://doi.org/10.9790/0853-1710097075

El-Beialy AR, Abou-El-Ezz AM, Attia KH, El-Bialy AM, Mostafa YA. Loss of anchorage of miniscrews: A 3-dimensional assessment. Am J Orthod Dentofacial Orthop. 2009;136(5):700-7. https://doi.org/10.1016/j.ajodo.2007.10.059 PMid:19892288 DOI: https://doi.org/10.1016/j.ajodo.2007.10.059

Jasmine MI, Yezdani AA, Tajir F, Venu RM. Analysis of stress in bone and microimplants during en-masse retraction of maxillary and mandibular anterior teeth with different insertion angulations: A 3-dimensional finite element analysis study. Am J Orthod Dentofacial Orthop. 2012;141(1):71-80. https://doi.org/10.1016/j.ajodo.2011.06.031 DOI: https://doi.org/10.1016/j.ajodo.2011.06.031

PMid:22196187

Woodall N, Tadepalli SC, Qian F, Grosland NM, Marshall SD, Southard TE. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop. 2011;139(2):e147-52. https://doi.org/10.1016/j.ajodo.2010.08.017 PMid:21300225 DOI: https://doi.org/10.1016/j.ajodo.2010.08.017

Machado GL. Effects of orthodontic miniscrew placement angle and structure on the stress distribution at the bone miniscrew interface-A 3D finite element analysis. Saudi J Dent Res. 2014;5(2):73-80. https://doi.org/10.1016/j.sjdr.2014.01.001 DOI: https://doi.org/10.1016/j.sjdr.2014.01.001

Byoun NY, Nam EH, Yoon YH, Kim IK. Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface. Korean J Orthod. 2006;36(3):178-87.

Gracco A, Cirignaco A, Cozzani M, Boccaccio A, Pappalettere C, Vitale G. Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage. Eur J Orthod. 2009;31(1):12-20. https://doi.org/10.1093/ejo/cjn066 PMid:19088058 DOI: https://doi.org/10.1093/ejo/cjn066

Duaibis R, Kusnoto B, Natarajan R, Zhao L, Evans C. Factors affecting stresses in cortical bone around miniscrew implants: A three-dimensional finite element study. Angle Orthod. 2012;82(5):875-80. https://doi.org/10.2319/111011-696.1 PMid:22390634 DOI: https://doi.org/10.2319/111011-696.1

Kojima Y, Kawamura J, Fukui H. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics. Am J Orthod Dentofacial Orthop. 2012;142(4):501-8. https://doi.org/10.1016/j.ajodo.2012.05.014 PMid:22999674 DOI: https://doi.org/10.1016/j.ajodo.2012.05.014

Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2011;139(1):e59-71. https://doi.org/10.1016/j.ajodo.2010.09.020 PMid:21195258 DOI: https://doi.org/10.1016/j.ajodo.2010.09.020

Liu TC, Chang CH, Wong TY, Liu JK. Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2012;141(4):468-76. https://doi.org/10.1016/j.ajodo.2011.11.012 PMid:22464529 DOI: https://doi.org/10.1016/j.ajodo.2011.11.012

Jain A, Hattark R, Patel P, Khandelwal V, Sapre J. Comparison of stress distribution in bone and miniscrew and displacement pattern of maxillary anterior teeth by two methods of en-masse retraction: A3-D finite element analysis. IP Indian J Orthod Dentofacial Res. 2017;3(1):23-30. DOI: https://doi.org/10.18231/2455-6785.2017.0005

Choi B, Lee DO, Mo SS, Kim SH, Park KH, Chung KR, et al. Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length. Korean J Orthod. 2011;41(6):423-30. https://doi.org/10.4041/kjod.2011.41.6.423 DOI: https://doi.org/10.4041/kjod.2011.41.6.423

Ramesh B, Srinivasan D, Duraiswamy S. Analysis of stress in bone with orthodontic mini-implants during en-masse retraction of maxillary and mandibular anterior teeth: A finite element analysis. J Pharm Sci Res. 2021;13(5):302-12.

Downloads

Published

2023-01-24

How to Cite

1.
Ghorab H, Ramadan AAF, Nadim MA, Sharaf T. Finite Element Study to Evaluate the Stress Around Mini-implant during Canine Retraction using Continuous and Interrupted Orthodontic Forces. Open Access Maced J Med Sci [Internet]. 2023 Jan. 24 [cited 2024 May 6];11(D):36-43. Available from: https://oamjms.eu/index.php/mjms/article/view/11122