Effectiveness of Marine Bioactive Compound Fucoidan in Stimulating Osteoblast Cells Formation: A Systematic Review

Authors

  • Nurlindah Hamrun Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
  • Daranisa Wulan Purnamasari Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
  • Andi Sitti Hajrah Yusuf Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia https://orcid.org/0000-0003-3010-4524
  • Muhammad Ruslin Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.11210

Keywords:

fucoidan, brown seaweed, osteoblast, tissue engineering, alveolar bone

Abstract

BACKGROUND: Bone loss in the oral cavity can occur in various situations, including periodontitis-related issues and complications after tooth extraction. A damaged or lost alveolar bone can be restored through a tissue engineering approach. Fucoidan, a marine biopolymer derived from brown algae, is one biomaterial that aids bone regeneration since it contains biomaterials that can generate new osteoblast cells.

AIM: The purpose of this review is to determine whether fucoidan can be employed to promote osteoblast cell growth during bone repair.

METHODS: The search strategy was performed in PubMed; Elsevier (Scopus); ScienceDirect; Libgen, and Google Scholar. In addition, a manual hand searching was performed to locate and identify additional studies.

RESULTS: Based on the reviewed articles, it has been discovered that five met the inclusion criteria and found that the marine bioactive compound fucoidan can significantly increase the expression of ALP activity.

CONCLUSION: Fucoidan is considered to have biological properties, including antithrombotic, anticoagulant, and antioxidant. It also serves as a phenotypic marker during the early stages of osteoblastic differentiation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:615486. https://doi.org/10.1155/2015/615486 PMid:26065002 DOI: https://doi.org/10.1155/2015/615486

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. https://doi.org/10.1155/2015/421746 PMid:26247020 DOI: https://doi.org/10.1155/2015/421746

Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone Metab. 2008;5(1):49-56. PMid:22460846

Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-27. https://doi.org/10.1177/0004563218759371 PMid:29368538 DOI: https://doi.org/10.1177/0004563218759371

Madanagopal TT, Agarwalla SV, Rosa V. Carbon nanocomposites for implant dentistry and bone tissue engineering. In: Applications of Nanocomposite Materials in Dentistry. Netherlands: Elsevier; 2019. p. 47-63. DOI: https://doi.org/10.1016/B978-0-12-813742-0.00003-1

Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013;5(Suppl 1):S125-7. https://doi.org/10.4103/0975-7406.113312 PMid:23946565 DOI: https://doi.org/10.4103/0975-7406.113312

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10 PMid:23339648 DOI: https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci. 2011;2011:290602. https://doi.org/10.1155/2011/290602 DOI: https://doi.org/10.1155/2011/290602

Saima S, Jan SM, Shah AF, Yousuf A, Batra M. Bone grafts and bone substitutes in dentistry. J Oral Res Rev. 2016;8(1):36-8. https://doi.org/10.4103/2249-4987.182488 DOI: https://doi.org/10.4103/2249-4987.182488

Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008;13(8):1671-95. https://doi.org/10.3390/molecules13081671 DOI: https://doi.org/10.3390/molecules13081671

Venkatesan J, Anil S, Rao S, Kim SK. Macroalgal fucoidan for biomedical applications. In: Handbook of Algal Technologies and Phytochemicals. Florida, United States: CRC Press; 2019. p. 13-23. DOI: https://doi.org/10.1201/9780429054242-2

Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic effects of fucoidan: A review on recent studies. Mar Drugs. 2019;17(9):487. https://doi.org/10.3390/md17090487 PMid:31438588 DOI: https://doi.org/10.3390/md17090487

Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, et al. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med. 2020;18(1):479. https://doi.org/10.1186/s12967-020-02664-7 PMid:33308247 DOI: https://doi.org/10.1186/s12967-020-02664-7

Hwang PA, Hung YL, Phan NN, Hieu BT, Chang PM, Li KL, et al. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology. 2016;68(4):1349-59. https://doi.org/10.1007/s10616-015-9894-5 PMid:26271462 DOI: https://doi.org/10.1007/s10616-015-9894-5

Park SJ, Lee KW, Lim, DS, Lee S. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose- derived stem cells. Stem Cells Dev. 2012;21(12):2204-11. https://doi.org/10.1089/scd.2011.0521 PMid:22050637 DOI: https://doi.org/10.1089/scd.2011.0521

Kim BS, Yang SS, You HK, Shin HI, Lee J. Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med 2018;12(3):e1311-24. https://doi.org/10.1002/term.2509 PMid:28714275 DOI: https://doi.org/10.1002/term.2509

Kim BS, Kang HJ, Park JY, Lee J. Fucoidan promotes osteoblast differentiation via JNK-and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med 2015;47(1):e128. https://doi.org/10.1038/emm.2014.95 PMid:25572360 DOI: https://doi.org/10.1038/emm.2014.95

Hsu FY, Chen JJ, Sung WC, Hwang PA. Preparation of a fucoidan-grafted hyaluronan composite hydrogel for the induction of osteoblast differentiation in osteoblast-like cells. Materials. 2021;14(5):1168. https://doi.org/10.3390/ma14051168 PMid:33801348 DOI: https://doi.org/10.3390/ma14051168

Mohamed AM. An overview of bone cells and their regulating factors of differentiation. Malays J Med Sci 2008;15:4-12. PMid:22589609

Teitelbaum SL. Osteoclasts: What do they do and how do they do it? Am J Pathol 2007;170(2):427-35. https://doi.org/10.2353/ajpath.2007.060834 PMid:17255310 DOI: https://doi.org/10.2353/ajpath.2007.060834

Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010;285:25103-8. https://doi.org/10.1074/jbc.R109.041087 PMid:20501658 DOI: https://doi.org/10.1074/jbc.R109.041087

Chandika P, Jung WK. Marine algae based biomaterials for osteoblast differentiation and tissue regeneration. In: Marine Algae Extracts: Processes, Products, and Applications. United States: Wiley; 2015. p. 489-508. DOI: https://doi.org/10.1002/9783527679577.ch29

Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019;9:26252-62. https://doi.org/10.1039/C9RA05214C DOI: https://doi.org/10.1039/C9RA05214C

Cho YS, Jung WK, Kim JA, Choi IW, Kim SK. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem. 2009;116:990-4. https://doi.org/10.1016/j.foodchem.2009.03.051 DOI: https://doi.org/10.1016/j.foodchem.2009.03.051

Mukhamejanov E, Kurilenko V. Fucoidan: A nutraceutical for metabolic and regulatory systems homeostasis maintenance. World J Adv Res Rev. 2020;6:255-64. https://doi.org/10.30574/wjarr.2020.6.1.0106 DOI: https://doi.org/10.30574/wjarr.2020.6.1.0106

Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr Polym. 2020;228:115381. https://doi.org/10.1016/j.carbpol.2019.115381 PMid:31635744 DOI: https://doi.org/10.1016/j.carbpol.2019.115381

Downloads

Published

2023-02-02

How to Cite

1.
Hamrun N, Purnamasari DW, Yusuf ASH, Ruslin M. Effectiveness of Marine Bioactive Compound Fucoidan in Stimulating Osteoblast Cells Formation: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2023 Feb. 2 [cited 2024 Nov. 23];11(F):81-5. Available from: https://oamjms.eu/index.php/mjms/article/view/11210

Issue

Section

Systematic Review Article

Categories