Pan-Cancer Analysis of the Expression and Prognostic Value of S-Phase Kinase-Associated Protein 2

Authors

  • Minh Tien Nguyen Department of Spinal Surgery, Institute of Trauma and Orthopedics, 108 Military Central Hospital, Hanoi, Vietnam
  • Manh T Hoang Department of Medical Sciences, Faculty of Medicine, Vietnam Military Medical University, Hanoi, Vietnam https://orcid.org/0000-0002-7096-0061
  • Hoai Thi Thu Bui Department of Multi-specialty, Faculty of Medicine, School of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam https://orcid.org/0000-0003-0447-9904

DOI:

https://doi.org/10.3889/oamjms.2023.11212

Keywords:

S-Phase Kinase-Associated Protein 2 (SKP2), pan-cancer, prognosis, biomarker, cell cycle

Abstract

BACKGROUND: S-Phase Kinase-Associated Protein 2 (SKP2) is essential in modulating metabolism processes, cell proliferation, and carcinogenesis DUE to its capacity to ubiquitinate and degrade various tumor-suppressive substrates. However, the actual biological and mechanism significance of SKP2 in the development of tumors and as a possible therapeutic target remains to be completely understood.

AIM: This study aimed to explore the potential roles of the SKP2 gene in the oncologic pathogenesis of various cancers through an in-depth pan-cancer analysis including gene expression assessment, survival analysis, genetic alteration, and enrichment analysis.

METHODS: Public databases including the Cancer Genome Atlas database, Genotype-Tissue Expression Project database, cBioPortal database, Gene Expression Profiling Interactive Analysis 2 database, Tumor Immune Estimation Resource version 2.0 database, and STRING database were used to detect the SKP2 expression, molecular mechanism, and its association with the prognosis across pan-cancer.

RESULTS: SKP2 was significantly highly expressed in most types of cancers and was substantially correlated to the poor survival of patients with specific cancers based on the log-rank test. SKP2 had the highest frequency of alteration in lung cancer and amplification was the most common genetic alteration type. Finally, SKP2-related genes were identified and enrichment analyses were conducted.

CONCLUSION: This study presented the first demonstration of the pan-cancer landscape of abnormal SKP2 expression, it could potentially serve as a predictive indicator and prospective therapeutic target.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biographies

Minh Tien Nguyen, Department of Spinal Surgery, Institute of Trauma and Orthopedics, 108 Military Central Hospital, Hanoi, Vietnam

 

 

Manh T Hoang, Department of Medical Sciences, Faculty of Medicine, Vietnam Military Medical University, Hanoi, Vietnam

 

 

Hoai Thi Thu Bui, Department of Multi-specialty, Faculty of Medicine, School of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam

 

 

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660 PMid:33538338 DOI: https://doi.org/10.3322/caac.21660

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021; Epub ahead of print. https://doi.org/10.1002/ijc.33588 PMid:33818764 DOI: https://doi.org/10.1002/ijc.33588

Chen F, Wendl MC, Wyczalkowski MA, Bailey MH, Li Y, Ding L. Moving pan-cancer studies from basic research toward the clinic. Nat Cancer. 2021;2(9):879-90. https://doi.org/10.1038/s43018-021-00250-4 PMid:35121865 DOI: https://doi.org/10.1038/s43018-021-00250-4

Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12(5):457-67. https://doi.org/10.1038/ncb2047 PMid:20383141 DOI: https://doi.org/10.1038/ncb2047

Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, et al. The Skp2- SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149(5):1098-111. https://doi.org/10.1016/j.cell.2012.02.065 PMid:22632973 DOI: https://doi.org/10.1016/j.cell.2012.02.065

Zhang L, Wang C. F-box protein Skp2: A novel transcriptional target of E2F. Oncogene. 2006;25(18):2615-27. https://doi.org/10.1038/sj.onc.1209286 PMid:16331253 DOI: https://doi.org/10.1038/sj.onc.1209286

Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma. 2018;59(5):1051-63. https://doi.org/10.1080/10428194.2017.1359740 PMid:28797197 DOI: https://doi.org/10.1080/10428194.2017.1359740

Liao Y, Liu N, Xia X, Guo Z, Li Y, Jiang L, et al. USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discov. 2019;5:24. https://doi.org/10.1038/s41421-019-0092-z PMid:31044085 DOI: https://doi.org/10.1038/s41421-019-0092-z

Zhao H, Pan H, Wang H, Chai P, Ge S, Jia R, et al. SKP2 targeted inhibition suppresses human uveal melanoma progression by blocking ubiquitylation of p27. Onco Targets Ther. 2019;12:4297-308. https://doi.org/10.2147/ott.S203888 PMid:31213847 DOI: https://doi.org/10.2147/OTT.S203888

Hu JJ, Zhou C, Luo X, Luo SZ, Li ZH, Xu ZX, et al. Linc-SCRG1 accelerates progression of hepatocellular carcinoma as a ceRNA of miR26a to derepress SKP2. J Exp Clin Cancer Res. 2021;40(1):26. https://doi.org/10.1186/s13046-020-01825-2 PMid:33422101 DOI: https://doi.org/10.1186/s13046-020-01825-2

Li C, Du L, Ren Y, Liu X, Jiao Q, Cui D, et al. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J Exp Clin Cancer Res. 2019;38(1):76. https://doi.org/10.1186/s13046-019-1069-3 PMid:30760284 DOI: https://doi.org/10.1186/s13046-019-1069-3

Malek E, Abdel-Malek MA, Jagannathan S, Vad N, Karns R, Jegga AG, et al. Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma. Leukemia. 2017;31(3):645-53. https://doi.org/10.1038/leu.2016.258 PMid:27677741 DOI: https://doi.org/10.1038/leu.2016.258

Šimečková Š, Kahounová Z, Fedr R, Remšík J, Slabáková E, Suchánková T, et al. High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells. Sci Rep. 2019;9(1):5695. https://doi.org/10.1038/s41598-019-42131-y PMid:30952903 DOI: https://doi.org/10.1038/s41598-019-42131-y

Zhong K, Yang F, Han Q, Chen J, Wang J. Skp2 expression has different clinicopathological and prognostic implications in lung adenocarcinoma and squamous cell carcinoma. Oncol Lett. 2018;16(3):2873-80. https://doi.org/10.3892/ol.2018.9000 PMid:30127874 DOI: https://doi.org/10.3892/ol.2018.9000

Hoang TM, Nguyen MT, Chen W, Zhuang C, Wang Z, Wang H, et al. Elevated expression of SKP2 correlates with poor prognosis in osteosarcoma: A bioinformatics analysis. Biomed Res Ther. 2021;8(12):4782-92. https://doi.org/10.15419/bmrat.v8i12.714 DOI: https://doi.org/10.15419/bmrat.v8i12.714

Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol. 2016;36:18-32. https://doi.org/10.1016/j.semcancer.2015.09.008 DOI: https://doi.org/10.1016/j.semcancer.2015.09.008

PMid:26410033

Li P, Chen T, Kuang P, Liu F, Li Z, Liu F, et al. Aurora-A/FOXO3A/ SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting aurora-A/SKP2 shows synthetic lethality. Cell Death Dis. 2022;13(7):606. https://doi.org/10.1038/s41419-022-04973-9 PMid:35831273 DOI: https://doi.org/10.1038/s41419-022-04973-9

Zhao H, Iqbal NJ, Sukrithan V, Nicholas C, Xue Y, Yu C, et al. Targeted inhibition of the E3 ligase SCFSkp2/Cks1 has antitumor activity in RB1-deficient human and mouse small-cell lung cancer. Cancer Res. 2020;80(11):2355-67. https://doi.org/10.1158/0008-5472.Can-19-2400 PMid:32265224 DOI: https://doi.org/10.1158/0008-5472.CAN-19-2400

Katona BW, Glynn RA, Paulosky KE, Feng Z, Davis CI, Ma J, et al. Combined menin and EGFR inhibitors synergize to suppress colorectal cancer via EGFR-independent and calcium-mediated repression of SKP2 transcription. Cancer Res. 2019;79(9):2195-207. https://doi.org/10.1158/0008-5472.Can-18-2133 PMid:30877106 DOI: https://doi.org/10.1158/0008-5472.CAN-18-2133

Zhang Y, Zvi YS, Batko B, Zaphiros N, O’Donnell EF, Wang J, et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep. 2018;8(1):14294. https://doi.org/10.1038/s41598-018-32428-9 PMid:30250282 DOI: https://doi.org/10.1038/s41598-018-32428-9

Byun WS, Jin M, Yu J, Kim WK, Song J, Chung HJ, et al. A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel-resistant prostate cancer. Biochem Pharmacol. 2018;158:84-94. https://doi.org/10.1016/j.bcp.2018.10.002 PMid:30292755 DOI: https://doi.org/10.1016/j.bcp.2018.10.002

Ravaioli A, Monti F, Regan MM, Maffini F, Mastropasqua MG, Spataro V, et al. p27 and Skp2 immunoreactivity and its clinical significance with endocrine and chemo-endocrine treatments in node-negative early breast cancer. Ann Oncol. 2008;19(4):660-8. https://doi.org/10.1093/annonc/mdm547 PMid:18272916 DOI: https://doi.org/10.1093/annonc/mdm547

Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111(9):4690-9. https://doi.org/10.1182/blood-2007-09-112904 PMid:18305219 DOI: https://doi.org/10.1182/blood-2007-09-112904

Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68-77. https://doi.org/10.5114/wo.2014.47136 PMid:25691825 DOI: https://doi.org/10.5114/wo.2014.47136

GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580-5. https://doi.org/10.1038/ng.2653 PMid:23715323 DOI: https://doi.org/10.1038/ng.2653

Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-14. https://doi.org/10.1093/nar/gkaa407 PMid:32442275 DOI: https://doi.org/10.1093/nar/gkaa407

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-4. https://doi.org/10.1158/2159-8290.Cd-12-0095 PMid:22588877 DOI: https://doi.org/10.1158/2159-8290.CD-12-0095

Snel B, Lehmann G, Bork P, Huynen MA. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28(18):3442-4. https://doi.org/10.1093/nar/28.18.3442 PMid:10982861 DOI: https://doi.org/10.1093/nar/28.18.3442

Petroski MD, Deshaies RJ. Function and regulation of cullin- RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6(1):9-20. https://doi.org/10.1038/nrm1547 PMid:15688063 DOI: https://doi.org/10.1038/nrm1547

Yi W, Qiao T, Yang Z, Hu L, Sun M, Fan H, et al. The regulation role and diagnostic value of fibrinogen-like protein 1 revealed by pan-cancer analysis. Mater Today Bio. 2022;17:100470. https://doi.org/10.1016/j.mtbio.2022.100470 PMid:36345363 DOI: https://doi.org/10.1016/j.mtbio.2022.100470

Qiu Y, Wang H, Liao P, Xu B, Hu R, Yang Y, et al. Systematic pan-cancer landscape identifies CARM1 as a potential prognostic and immunological biomarker. BMC Genom Data. 2022;23(1):7. https://doi.org/10.1186/s12863-021-01022-w PMid:35033016 DOI: https://doi.org/10.1186/s12863-021-01022-w

Naqvi AA, Rizvi SA, Hassan MI. Pan-cancer analysis of chromobox (CBX) genes for prognostic significance and cancer classification. Biochim Biophys Acta Mol Basis Dis. 2023;1869(1):166561. https://doi.org/10.1016/j.bbadis.2022.166561 PMid:36183965 DOI: https://doi.org/10.1016/j.bbadis.2022.166561

Han M, Li Y, Guo Y, Zhu W, Jiang J. Integrative and comprehensive pan-cancer analysis of lymphocyte-specific protein tyrosine kinase in human tumors. Int J Mol Sci. 2022;23(22):13998. https://doi.org/10.3390/ijms232213998 PMid:36430477 DOI: https://doi.org/10.3390/ijms232213998

Ragusa D, Tosi S, Sisu C. Pan-cancer analysis identifies MNX1 and associated antisense transcripts as biomarkers for cancer. Cells. 2022;11(22):3577. https://doi.org/10.3390/cells11223577 PMid:36429006 DOI: https://doi.org/10.3390/cells11223577

Waters LC, Strong SL, Ferlemann E, Oka O, Muskett FW, Veverka V, et al. Structure of the tandem MA-3 region of Pdcd4 protein and characterization of its interactions with eIF4A and eIF4G: Molecular mechanisms of a tumor suppressor. J Biol Chem. 2011;286(19):17270-80. https://doi.org/10.1074/jbc.M110.166157 PMid:21454508 DOI: https://doi.org/10.1074/jbc.M110.166157

Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641. https://doi.org/10.1038/ncomms7641 PMid:25818643 DOI: https://doi.org/10.1038/ncomms7641

Delogu S, Wang C, Cigliano A, Utpatel K, Sini M, Longerich T, et al. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget. 2015;6(4):2222-34. https://doi.org/10.18632/oncotarget.2945 PMid:25537506 DOI: https://doi.org/10.18632/oncotarget.2945

Wei X, Li X, Yan W, Zhang X, Sun Y, Zhang F. SKP2 promotes hepatocellular carcinoma progression through nuclear AMPK-SKP2-CARM1 signaling transcriptionally regulating nutrient-deprived autophagy induction. Cell Physiol Biochem. 2018;47(6):2484-97. https://doi.org/10.1159/000491622 PMid:29991055 DOI: https://doi.org/10.1159/000491622

Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002. https://doi.org/10.1038/ncomms14002 PMid:28090088 DOI: https://doi.org/10.1038/ncomms14002

Zou J, Lin Y, Hu M, Wan M, Tan X, Xu X, et al. N-Myc transcriptionally activates Skp2 to suppress p27 expression in small cell lung cancer. Pathol Res Pract. 2022;238:154083. https://doi.org/10.1016/j.prp.2022.154083 PMid:36027654 DOI: https://doi.org/10.1016/j.prp.2022.154083

Krishnan AK, Babu PS, Jagadeeshan S, Prasad M, Nair SA. Oncogenic actions of SKP2 involves deregulation of CDK1 turnover mediated by FOXM1. J Cell Biochem. 2017;118(4):797-807. https://doi.org/10.1002/jcb.25754 PMid:27684411 DOI: https://doi.org/10.1002/jcb.25754

Pagano M. Control of DNA synthesis and mitosis by the Skp2- p27-Cdk1/2 axis. Mol Cell. 2004;14(4):414-6. https://doi.org/10.1016/s1097-2765(04)00268-0 PMid:15149588 DOI: https://doi.org/10.1016/S1097-2765(04)00268-0

Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesis. Biol Reprod. 2019;101(3):591-601. https://doi.org/10.1093/biolre/ioz070 PMid:31078132 DOI: https://doi.org/10.1093/biolre/ioz070

Diril MK, Ratnacaram CK, Padmakumar VC, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109(10):3826-31. https://doi.org/10.1073/pnas.1115201109 PMid:22355113 DOI: https://doi.org/10.1073/pnas.1115201109

Katsuno Y, Suzuki A, Sugimura K, Okumura K, Zineldeen DH, Shimada M, Niida H, Mizuno T, Hanaoka F, Nakanishi M. Cyclin A–Cdk1 regulates the origin firing program in mammalian cells. Proceedings of the National Academy of Sciences. 2009 Mar 3;106(9):3184-9. https://doi.org/10.1073/pnas.0809350106 DOI: https://doi.org/10.1073/pnas.0809350106

Downloads

Published

2023-01-06

How to Cite

1.
Nguyen MT, Hoang MT, Bui HTT. Pan-Cancer Analysis of the Expression and Prognostic Value of S-Phase Kinase-Associated Protein 2. Open Access Maced J Med Sci [Internet]. 2023 Jan. 6 [cited 2024 Apr. 24];11(A):58-69. Available from: https://oamjms.eu/index.php/mjms/article/view/11212