Cinnamomum burmannii Bl. Bark Ameliorate Lipid Profile and Platelet Aggregation in Dyslipidemia Mice through Antioxidant Activity

Authors

  • Ni Made Dwi Sandhiutami Departement Pharmacology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia https://orcid.org/0000-0003-3449-1998
  • Rika Sari Dewi Departement Pharmacology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia https://orcid.org/0000-0001-5317-4547
  • Lilis Suryani Departement Pharmacology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
  • Adriani Hendra Departement Pharmacology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia https://orcid.org/0000-0003-0446-6695
  • Kevin Christopher Departement Pharmacology, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.11221

Keywords:

cinnamon bark extract, Cinnamomum burmannii Bl., antioxidant, anti-platelet aggregation, anti-dyslipidemia

Abstract

BACKGROUND: Cinnamomum burmannii Bl. has a higher coumarin, flavonoids, saponins, and alkaloids.

AIM: We investigated the antioxidant, anti-platelet aggregation, and anti-dyslipidemia activity of cinnamon bark extract (CBE) in dyslipidemia mice.

METHODS: Mice were divided randomly into six groups (n = 5) that consist of normal control, negative control, positive control (atorvastatin), and test groups of CBE at doses 300, 400, and 500 mg/kg BW. All groups except normal control were given dyslipidemic-induced feed for 14 days. After that, the induction of dyslipidemia was stopped, then continued with suspension of atorvastatin (positive control) and the test group was given CBE for 7 days. Then, it was measured malondialdehyde (MDA), superoxide dismutase (SOD), bleeding time, coagulation time, total cholesterol, triglyceride, low density lipoprotein (LDL), and high-density lipoprotein (HDL).

RESULTS: The CBE has antioxidant activity by decreased MDA concentrations and increased SOD activity in dose group 300; 400; and 500 mg/kg BW compared to negative control. The anti-platelet aggregation of CBE showed that the effects of prolong bleeding time and coagulation time and improve the decreased plasma absorbance after the addition of ADP. There was a decrease in total cholesterol for the three dose groups, respectively, 20.14%, 24.42%, and 35.76%. Triglyceride levels decreased by 4.09%, 8.74%, and 12.5%. LDL levels decreased by 38.17%, 53.8%, and 67.96%. HDL levels increased by 27.29%, 67.8%, and 72.64%.

CONCLUSION: CBE has antioxidant, anti-platelet aggregation and anti-dyslipidemia activity, and potential to prevent cardiovascular disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Souza BS, Carvalho HO, Ferreira IM, da Cunha EL, Barros AS, Taglialegna T, et al. Effect of the treatment with Euterpe oleracea mart. oil in rats with triton-induced dyslipidemia. Biomed Pharmacother. 2017;90:542-7. https://doi.org/10.1016/j.biopha.2017.04.005 PMid:28402923 DOI: https://doi.org/10.1016/j.biopha.2017.04.005

Li L, Liu S, Tang H, Song S, Lu L, Zhang P, et al. Effects of protocatechuic acid on ameliorating lipid profiles and cardio- protection against coronary artery disease in high fat and fructose diet fed in rats. J Vet Med Sci. 2020;82(9):1387-94. https://doi.org/10.1292/jvms.20-0245 PMid:32669485 DOI: https://doi.org/10.1292/jvms.20-0245

Yanti ND, Suryana S, Fitri Y. Analysis of carbohydrate and fat intake and physical activity on blood lipid profiles in patients with coronary heart disease. AcTion Aceh Nutr J. 2020;5(2):179-86. https://doi.org/10.30867/action.v5i2.183 DOI: https://doi.org/10.30867/action.v5i2.183

Shao C, Wang J, Tian J, Tang YD. Coronary artery disease: From mechanism to clinical practice. Adv Exp Med Biol. 2020;1177:1-36. https://doi.org/10.1007/978-981-15-2517-9_1 PMid:32246442 DOI: https://doi.org/10.1007/978-981-15-2517-9_1

Zhao D. Epidemiological features of cardiovascular disease in Asia. JACC Asia. 2021;1(1):1-13. https://doi.org/10.1016/j.jacasi.2021.04.007 PMid:36338365 DOI: https://doi.org/10.1016/j.jacasi.2021.04.007

Alfarisi HA, Mohamed ZB, Ibrahim MB. Basic pathogenic mechanisms of atherosclerosis. Egypt J Basic Appl Sci. 2020;7(1):116-25. https://doi.org/10.1080/2314808X.2020.1769913 DOI: https://doi.org/10.1080/2314808X.2020.1769913

Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive oxygen species (ROS), intimal thickening, and subclinical atherosclerotic disease. Front Cardiovasc Med. 2019;6:89. https://doi.org/10.3389/fcvm.2019.00089 PMid:31428618 DOI: https://doi.org/10.3389/fcvm.2019.00089

Wang L, Tang C. Targeting platelet in atherosclerosis plaque formation: Current knowledge and future perspectives. Int J Mol Sci. 2020;21(24):9760. https://doi.org/10.3390/ijms21249760 PMid:33371312 DOI: https://doi.org/10.3390/ijms21249760

Periayah MH, Halim AS, Saad AZ. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):319-27. PMid:29340130

Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012;1(1):60-74. https://doi.org/10.1177/2048872612441582 PMid:24062891 DOI: https://doi.org/10.1177/2048872612441582

Noyes JD, Mordi IR, Doney AS, Jamal R, Lang CC. Precision medicine and adverse drug reactions related to cardiovascular drugs. Diseases. 2021;9(3):55. https://doi.org/10.3390/diseases9030055 PMid:34449608 DOI: https://doi.org/10.3390/diseases9030055

Vinci P, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Mearelli F, et al. Statin-associated myopathy: Emphasis on mechanisms and targeted therapy. Int J Mol Sci. 2021;22(21):11687. https://doi.org/10.3390/ijms222111687 PMid:34769118 DOI: https://doi.org/10.3390/ijms222111687

Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 2013;2013:963248. https://doi.org/10.1155/2013/963248 PMid:23586066 DOI: https://doi.org/10.1155/2013/963248

Muhammad DR, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii blume extracts and their potential application in white chocolate. Food Chem. 2021;340:127983. https://doi.org/10.1016/j.foodchem.2020.127983 PMid:32919354 DOI: https://doi.org/10.1016/j.foodchem.2020.127983

Suryanti V, Wibowo FR, Khotijah S, Andalucki N. Antioxidant activities of cinnamaldehyde derivatives. IOP Conf Ser Mater Sci Eng. 2018;333(1):12077. https://doi.org/10.1088/1757-899X/333/1/012077 DOI: https://doi.org/10.1088/1757-899X/333/1/012077

Ren QC, Gao C, Xu Z, Feng LS, Liu ML, Wu X, et al. Bis- coumarin derivatives and their biological activities. Curr Top Med Chem. 2018;18(2):101-13. https://doi.org/10.2174/156802 6618666180221114515 PMid:29473509 DOI: https://doi.org/10.2174/1568026618666180221114515

Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EP, Harun N, Yeskaliyeva B, et al. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev. 2021;2021:6492346. https://doi.org/10.1155/2021/6492346 PMid:34531939 DOI: https://doi.org/10.1155/2021/6492346

Sandhiutami NM, Moordiani M, Laksmitawati DR, Fauziah N, Maesaroh M, Widowati W. In vitro assesment of anti- inflammatory activities of coumarin and Indonesian cassia extract in RAW264. 7 murine macrophage cell line. Iran J Basic Med Sci. 2017;20(1):99-106. https://doi.org/10.22038/ijbms.2017.8102 PMid:28133531

Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, et al. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol. 2021;12:600139. https://doi.org/10.3389/fphar.2021.600139 PMid:34045956 DOI: https://doi.org/10.3389/fphar.2021.600139

Rodriguez-Pérez C, Segura-Carretero A, del Mar Contreras M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr. 2019;59(8):1212-29. https://doi.org/10.1080/10408398.2017.1399859 PMid:29156939 DOI: https://doi.org/10.1080/10408398.2017.1399859

Dharmarajan SK, Arumugam KM. Comparative evaluation of flavone from Mucuna pruriens and coumarin from Ionidium suffruticosum for hypolipidemic activity in rats fed with high fat diet. Lipids Health Dis. 2012;11(1):126. https://doi.org/10.1186/1476-511X-11-126 PMid:23031584 DOI: https://doi.org/10.1186/1476-511X-11-126

Lončar M, Jakovljević M, Šubarić D, Pavlić M, Služek VB, Cindrić I, et al. Coumarins in food and methods of their determination. Foods. 2020;9(5):645. https://doi.org/10.3390/foods9050645 PMid:32443406 DOI: https://doi.org/10.3390/foods9050645

Wang Y, Harrington PD, Chen P. Metabolomic profiling and comparison of major cinnamon species using UHPLC-HRMS. Anal Bioanal Chem. 2020;412(27):7669-81. https://doi. org/10.1007/s00216-020-02904-1 PMid:32875369 DOI: https://doi.org/10.1007/s00216-020-02904-1

Sandhiutami NM, Desmiaty Y, Anbar A. Antioxidant effect of ethanol extract of papaya seeds (Carica papaya L.) on superoxide dismutase enzyme activity and malondialdehyde levels in oxidative stress mice by swimming. J Ilmu Kefarmasian Indones. 2017;14(1):23-6.

Dewi RS, Sandhiutami NM, Raharjo S. Anti--platelet aggregation effect from ethanol extract of Salam leaves (Syzygium polyanthum (wight) walp.) on mice. J Ilmu Kefarmasian Indones. 2017;15(1):31-7.

Sandhiutami NM, Desmiaty Y, Noviyanti N. Inhibitory effect of Lantana camara L., Eclipta prostrata (L.) L. and Cosmos caudatus kunth. leaf extracts on ADP-induced platelet aggregation. Pharmacogn J. 2018;10(3):581-5. https://doi. org/10.5530/pj.2018.3.95 DOI: https://doi.org/10.5530/pj.2018.3.95

Oreopoulou A, Tsimogiannis D, Oreopoulou V. Extraction of polyphenols from aromatic and medicinal plants: An overview of the methods and the effect of extraction parameters. In: Polyphenols in Plants. Massachusetts, United States: Academic Press; 2019. p. 243-59. https://doi.org/10.1016/ B978-0-12-813768-0.00025-6 DOI: https://doi.org/10.1016/B978-0-12-813768-0.00025-6

Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG. Coumarins-an important class of phytochemicals. In: Phytochem Characterisation Role Human Health. Vol. 25. London, United Kingdom: InTech; 2015. p. 533-8. https://doi.org/10.5772/59982 DOI: https://doi.org/10.5772/59982

Wardatun S, Rustiani E, Alfiani N, Rissani D. Study effect type of extraction method and type of solvent to cinnamaldehyde and trans-cinnamic acid dry extract cinnamon (Cinnamomum burmanii [Nees and T, Nees] blume). J Young Pharm. 2017;9(1):S49-51. https://doi.org/10.5530/jyp.2017.1s.13 DOI: https://doi.org/10.5530/jyp.2017.1s.13

Prasanna B, Anand AV. Cinnamon species: In vivo anti-oxidant activity of ethanolic extracts of Cinnamon zeylanicum and Cinnamon cassicae barks. Pharmacogn J. 2019;11(2):245-7. https://doi.org/10.5530/pj.2019.11.38 DOI: https://doi.org/10.5530/pj.2019.11.38

Susilowati R, Setiawan AM. Cinnamomum burmannii (Nees and T. Nees) blume and Eleutherine palmifolia (L.) merr. extract combination ameliorate lipid profile and heart oxidative stress in hyperlipidemic mice. Vet World. 2020;13(7):1404-9. https://doi.org/10.14202/vetworld.2020.1404-1409 PMid:32848317 DOI: https://doi.org/10.14202/10.14202/vetworld.2020.1404-1409

Rahayu DU, Hakim RA, Mawarni SA, Satriani AR. Indonesian cinnamon (Cinnamomum burmannii): Extraction, flavonoid content, antioxidant activity, and stability in the presence of ascorbic acid. Cosmetics. 2022;9(3):57. https://doi.org/10.3390/cosmetics9030057 DOI: https://doi.org/10.3390/cosmetics9030057

Zeb A. Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. Berlin, Germany: Springer; 2021. DOI: https://doi.org/10.1007/978-3-030-74768-8

Iskandar EY, Sigit JI, Fitriyani N. Antiplatelet aggregation of garlic (Allium sativum L.) water extract, turmeric (Curcuma domestica val.) ethanol extract and its combination to Swiss Webster male mice. Indones J Pharm. 2008;19(1):1-11. https://doi.org/10.14499/indonesianjpharm0iss0pp1-11

Von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull. 2019;151:12-24. https://doi.org/10.1016/j.brainresbull.2019.03.010 PMid:30922852 DOI: https://doi.org/10.1016/j.brainresbull.2019.03.010

Zheng C, Zeng Q, Pimpi S, Wu W, Han K, Dong K, et al. Research status and development potential of composite hemostatic materials. J Mater Chem B. 2020;8(25):5395-410. https://doi.org/10.1039/d0tb00906g DOI: https://doi.org/10.1039/D0TB00906G

Guidetti GF, Torti M, Canobbio I. Focal adhesion kinases in platelet function and thrombosis. Arterioscler Thromb Vasc Biol.

;39(5):857-68. https://doi.org/10.1161/atvbaha.118.311787 PMid:30894012 DOI: https://doi.org/10.1161/ATVBAHA.118.311787

Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis. 2020;50(4):874-85. https://doi.org/10.1007/s11239-020-02098-4 PMid:32248335 DOI: https://doi.org/10.1007/s11239-020-02098-4

Tiwari S, Talreja S. Importance of Cinnamomum tamala in the treatment of various diseases. Pharmacogn. J. 2020;12(6):1792-6. https://doi.org/10.5530/pj.2020.12.241 DOI: https://doi.org/10.5530/pj.2020.12.241

Kasperkiewicz K, Ponczek MB, Owczarek J, Guga P, Budzisz E. Antagonists of Vitamin K-popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules. 2020;25(6):1465. https://doi.org/10.3390/molecules25061465 PMid:32213944 DOI: https://doi.org/10.3390/molecules25061465

Huang JQ, Luo XX, Wang S, Xie YH, Shi XY. Effects of cinnamaldehyde on platelet aggregation and thrombosis formation. Chin J Clin Rehabil. 2006;10(31):34-6.

Mehrpouri M, Hamidpour R, Hamidpour M. Cinnamon inhibits platelet function and improves cardiovascular system. J Med Plants. 2020;19(73):1-11. https://doi.org/10.29252/jmp.1.73.1 DOI: https://doi.org/10.29252/jmp.1.73.1

Alsoodeeri FN, Alqabbani HM, Aldossari NM. Effects of Cinnamon (Cinnamomum cassia) consumption on serum lipid profiles in albino rats. J Lipids. 2020;2020:8469830. https://doi.org/10.1155/2020/8469830 PMid:32411477 DOI: https://doi.org/10.1155/2020/8469830

Jensi VD, Gopu PA. Comparative analysis of quercetin and leucocynidin against HMG-CoA reductase and their evaluation of hypolipidemic activity. J Pharm Sci Res. 2018;10(12):3417-21.

Yu HH, Qiu YX, Li B, Peng CY, Zeng R, Wang W. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis. J. Ethnopharmacol. 2021;267:113496. https://doi.org/10.1016/j.jep.2020.113496 PMid:33091494 DOI: https://doi.org/10.1016/j.jep.2020.113496

Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, et al. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct. 2021;12(24):12194-220. https://doi.org/10.1039/D1FO01935J PMid:34752593 DOI: https://doi.org/10.1039/D1FO01935J

Iyer KS, Dayal S. Modulators of platelet function in aging. Platelets. 2020;31(4):474-82. https://doi.org/10.1080/09537104.2019.1665641 PMid:31524038 DOI: https://doi.org/10.1080/09537104.2019.1665641

Barale C, Russo I. Influence of cardiometabolic risk factors on platelet function. Int J Mol Sci. 2020;21(2):623. https://doi.org/10.3390/ijms21020623 PMid:31963572 DOI: https://doi.org/10.3390/ijms21020623

Alipov VI, Sukhorukov VN, Karagodin VP, Grechko AV, Orekhov AN. Chemical composition of circulating native and desialylated low density lipoprotein: What is the difference? Vessel Plus. 2017;1:107-15. https://doi.org/10.20517/2574-1209.2017.20 DOI: https://doi.org/10.20517/2574-1209.2017.20

Singh A, Singh A, Kushwaha R, Yadav G, Tripathi T, Chaudhary SC, et al. Hyperlipidemia and platelet parameters: Two sides of the same coin. Cureus. 2022;14(6):e25884. https://doi.org/10.7759/cureus.25884 PMid:35734024 DOI: https://doi.org/10.7759/cureus.25884

Tsui PF, Lin CS, Ho LJ, Lai JH. Spices and atherosclerosis. Nutrients. 2018;10(11):1724. https://doi.org/10.3390/nu10111724 PMid:30423840 DOI: https://doi.org/10.3390/nu10111724

Downloads

Published

2023-01-24

How to Cite

1.
Sandhiutami NMD, Dewi RS, Suryani L, Hendra A, Christopher K. Cinnamomum burmannii Bl. Bark Ameliorate Lipid Profile and Platelet Aggregation in Dyslipidemia Mice through Antioxidant Activity. Open Access Maced J Med Sci [Internet]. 2023 Jan. 24 [cited 2024 Apr. 27];11(A):127-3. Available from: https://oamjms.eu/index.php/mjms/article/view/11221