Citrus aurantium Peel Extract Combined with Doxorubicin-Induced ROS-driven Cell Cycle Arrest and Apoptosis of Triple-Negative Breast Cancer Cells
DOI:
https://doi.org/10.3889/oamjms.2023.11290Keywords:
Citrus aurantium peel extract, Doxorubicin, Reactive oxygen species, Apoptosis, Triple-negative breast cancer cellsAbstract
The current approach to breast cancer has problems with the emergence of resistance, side effects, and even the emergence of post-therapy relapses. One of the reasons is that the available chemotherapy is still based on cytotoxicity through cell cycle inhibition and apoptosis induction. In fact, there are still several mechanisms for the direction of cytotoxicity to become more prospective targets of chemotherapy action, such as reactive oxygen species (ROS) leading to cell death induction. One prospective candidate from natural ingredients is Citrus aurantium peel extract (CSP). This study aims to develop a CSP as a co-chemotherapy candidate that leads to aging induction and ROS modulation in breast cancer cells. The breast cancer cell model used is triple-negative breast cancer cells (TNBC), which is a highly metastatic cell model. Apoptosis and cell cycle modulation profiles were analyzed under PI-Annexin and PI flow cytometry, respectively. The ROS level was evaluated under DCFDA flow cytometry. The combination of CSP and Dox induces oxidative stress with ROS levels up to 3.5 times. The increase in ROS levels was in line with the dose-dependent induction of apoptosis and induced G2/M phase cell cycle arrest. Taken together, CSP potentially induces the Dox effect on MDA-MB-231 cells, which may be mediated by the elevation of the ROS levels leading to cell death induction.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: Necroptosis as a desperate programmed suicide pathway. Tumor Biol. 2016;37(4):4479-91. https://doi.org/10.1007/s13277-015-4258-5 PMid:26496737 DOI: https://doi.org/10.1007/s13277-015-4258-5
Pal SK, Childs BH, Pegram M. Triple negative breast cancer: Unmet medical needs. Breast Cancer Res Treat. 2011;125(3):627-36. https://doi.org/10.1007/s10549-010-1293-1 PMid:21161370 DOI: https://doi.org/10.1007/s10549-010-1293-1
Li X, Fan R, Zou X, Gao L, Jin H, Du R, et al. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma. Biochem Biophys Res Commun. 2007;358(2):489-94. https://doi.org/10.1016/j.bbrc.2007.04.134 PMid:17502111 DOI: https://doi.org/10.1016/j.bbrc.2007.04.134
Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep. 2018;8(1):2039. https://doi.org/10.1038/s41598-018-20179-6 PMid:29391517 DOI: https://doi.org/10.1038/s41598-018-20179-6
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656-60. https://doi.org/10.1038/nature05529 PMid:17251933 DOI: https://doi.org/10.1038/nature05529
Lozano G. Restoring p53 in cancer: The promises and the challenges. J Mol Cell Biol. 2019;11(7):615-9. https://doi.org/10.1093/jmcb/mjz063 PMid:31283825 DOI: https://doi.org/10.1093/jmcb/mjz063
Toshniwal AG, Gupta S, Mandal L, Mandal S. ROS inhibits cell growth by regulating 4EBP and S6K, independent of TOR, during development. Dev Cell. 2019;49(3):473-89.e9. https://doi.org/10.1016/j.devcel.2019.04.008 PMid:31063760 DOI: https://doi.org/10.1016/j.devcel.2019.04.008
Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic effect of Curcuma longa extract in combination with Phyllanthus niruri extract in regulating Annexin A2, epidermal growth factor receptor, matrix metalloproteinases, and pyruvate kinase M1/2 signaling pathway on breast cancer stem cell. Open Access Macedonian J Med Sci. 2021;9(A):271-85. https://doi.org/10.3889/oamjms.2021.5941 DOI: https://doi.org/10.3889/oamjms.2021.5941
Meiyanto E, Hermawan A, Anindyajati. Natural products for cancer-targeted therapy: Citrus flavonoids as potent chemo preventive agents. Asian Pac J Cancer Prev. 2012;13(2):427-36. https://doi.org/10.7314/apjcp.2012.13.2.427 PMid:22524801 DOI: https://doi.org/10.7314/APJCP.2012.13.2.427
Zhao J, Li Y, Gao J, De Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol Lett. 2017;14(5):5569-74. https://doi.org/10.3892/ol.2017.6873 PMid:29142606 DOI: https://doi.org/10.3892/ol.2017.6873
Sanders K, Moran Z, Shi Z, Paul R, Greenlee H. Natural products for cancer prevention: Clinical update 2016. Semin Oncol Nurs. 2016;32(3):215-40. https://doi.org/10.1016/j.soncn.2016.06.001 PMid:27539278 DOI: https://doi.org/10.1016/j.soncn.2016.06.001
Zhang QY, Wang FX, Jia KK, Kong LD. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front Pharmacol. 2018;9:1253. https://doi.org/10.3389/fphar.2018.01253 PMid:30459615 DOI: https://doi.org/10.3389/fphar.2018.01253
Amalina N, Nurhayati IP, Meiyanto E. Doxorubicin induces lamellipodia formation and cell migration. Indones J Cancer Chemoprev. 2017;8(2):61. https://doi.org/10.14499/indonesianjcanchemoprev8iss2pp61-67 DOI: https://doi.org/10.14499/indonesianjcanchemoprev8iss2pp61-67
Amalina ND, Wahyuni S, Harjito, H. Cytotoxic effects of the synthesized Citrus aurantium peels extract nanoparticles against MDA-MB-231 breast cancer cells. J Phys Conf Ser. 2021;1918:032006. https://doi.org/10.1088/1742-6596/1918/3/032006 DOI: https://doi.org/10.1088/1742-6596/1918/3/032006
Amalina ND, Suzey M, Cahyono B. Cytotoxic activity of Hyptis pectinata extracts on MCF-7 human breast cancer cells. Indones J Cancer Chemoprev. 2020;2:1-6. https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp1-6 DOI: https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp1-6
Tun JO, Salvador-Reyes LA, Velarde MC, Saito N, Suwanborirux K, Concepcion GP. Synergistic cytotoxicity of renieramycin M and doxorubicin in MCF-7 breast cancer cells. Mar Drugs. 2019;17(9):536. https://doi.org/10.3390/md17090536 PMid:31527453 DOI: https://doi.org/10.3390/md17090536
Ikawati M, Jenie RI, Utomo RY, Amalina ND, Ilmawati GP, Kawaichi M, et al. Genistein enhances cytotoxic and antimigratory activities of doxorubicin on 4T1 breast cancer cells through cell cycle arrest and ROS generation. J Appl Pharm Sci. 2020;10(10):95-104. https://doi.org/10.7324/JAPS.2020.1010011 DOI: https://doi.org/10.7324/JAPS.2020.1010011
Suzery M, Cahyono B, Amalina ND. Citrus sinensis (L) peels extract inhibits metastasis of breast cancer cells by targeting the down-regulation matrix metalloproteinases-9. Open Access Maced J Med Sci. 2021;9(B):464-9. https://doi.org/10.3889/oamjms.2021.6072 DOI: https://doi.org/10.3889/oamjms.2021.6072
Mursiti S, Amalina ND, Marianti A. Inhibition of breast cancer cell development using Citrus maxima extract through increasing levels of Reactive Oxygen Species (ROS). J Phys Conf Ser. 2021;1918:052005. https://doi.org/10.1088/1742-6596/1918/5/052005 DOI: https://doi.org/10.1088/1742-6596/1918/5/052005
Jin X, Mu P. Targeting breast cancer metastasis supplementary. Encycl Méd Chir. 2013;9:23-34.
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: An overview. Cancers (Basel). 2014;6(3):1769-92. https://doi.org/10.3390/cancers6031769 PMid:25198391 DOI: https://doi.org/10.3390/cancers6031769
Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: A review. Ther Adv Med Oncol. 2016;8(1):57-84. https://doi.org/10.1177/1758834015614530 PMid:26753006 DOI: https://doi.org/10.1177/1758834015614530
Hu T, Cho CH, editors. Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Cambridge, Massachusetts: Academic Press; 2020.
Sharma K, Mahato N, Lee YR. Extraction, characterization and biological activity of Citrus flavonoids. Rev Chem Eng. 2019;35(2):265-84. https://doi.org/10.1515/revce-2017-0027 DOI: https://doi.org/10.1515/revce-2017-0027
Wang L, Wang J, Fang L, Zheng Z, Zhi D, Wang S, et al. Anticancer activities of Citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int. 2014;2014:453972. https://doi.org/10.1155/2014/453972 PMid:25250322 DOI: https://doi.org/10.1155/2014/453972
Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus peel flavonoids as potential cancer prevention agents. Curr Dev Nutr. 2020;4:nzaa025. https://doi.org/10.1093/cdn/nzaa025 PMid:32391511 DOI: https://doi.org/10.1093/cdn/nzaa025
Tajaldini M, Samadi F, Khosravi A, Ghasemnejad A, Asadi J. Protective and anticancer effects of orange peel extract and Naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed Pharmacother. 2020;121:109594. https://doi.org/10.1016/j.biopha.2019.109594 PMid:31707344 DOI: https://doi.org/10.1016/j.biopha.2019.109594
Kottaiswamy A, Kizhakeyil A, Padmanaban AM, Mirza FB, Vijay VR, Lee PS, et al. The Citrus flavanone hesperetin induces apoptosis in CTCL cells via STAT3/Notch1/NFκB-mediated signaling axis. Anticancer Agents Med Chem. 2020;20(12):1459-68. https://doi.org/10.2174/1871521409666200324110031 PMid:32208126 DOI: https://doi.org/10.2174/1871521409666200324110031
Ghorbani A, Nazari M, Jeddi-Tehrani M, Zand H. The Citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: Involvement of PPARγ-dependent mechanism. Eur J Nutr. 2012;51(1):39-46. https://doi.org/10.1007/s00394-011-0187-2 PMid:21445621 DOI: https://doi.org/10.1007/s00394-011-0187-2
Paramita DA, Hermansyah D, Paramita DA, Amalina ND. Regulation of p53 and survivin by Curcuma longa extract to caspase-3 dependent apoptosis in triple negative breast cancer cells. Med Glas. 2022;19(2):189-96. https://doi.org/10.17392/1453-22 PMid:35924809
Monti E, Mancini A, Marras E, Gariboldi MB. Targeting mitochondrial ROS production to reverse the epithelial-mesenchymal transition in breast cancer cells. Curr Issues Mol Biol. 2022;44(11):5277-93. https://doi.org/10.3390/cimb44110359 PMid:36354671 DOI: https://doi.org/10.3390/cimb44110359
Downloads
Published
How to Cite
License
Copyright (c) 2023 Meiny Suzery, Nur Dina Amalina, Bambang Cahyono (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0