The Usefulness of Bronchoscopy in the Diagnosis of Mycobacterium tuberculosis Complex Species Infection

Authors

  • Budi Yanti Department of Pulmonology and Respiratory Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia https://orcid.org/0000-0003-2932-0764
  • Soetjipto Soetjipto Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Medical Biochemistry, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
  • Ni Made Mertaniasih Department of Medical Biochemistry, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Susaniwati Susaniwati Department of Pulmonology and Respiratory Medicine, Dr Moh Soewandhi Hospital, Surabaya, Indonesia
  • Muhammad Amin Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.11292

Keywords:

Bronchoscopy, Mycobacterium tuberculosis complex, Pulmonary tuberculosis, Bronchoalveolar lavage

Abstract

BACKGROUND: Pulmonary tuberculosis is an active chronic infection of the lungs. It is still a public health problem globally caused by the Mycobacterium tuberculosis Complex (MTBC). These species are difficult to determine only by conventional tests. The clinical manifestations are almost similar between the strains and cause diagnosis delays. Prolonged and intolerable MTBC therapy inhibits infection control.

AIM: This study aims to evaluate the usefulness of bronchoscopy in diagnosing the MTBC species infection.

METHODS: This study recruited patients with difficulty expectorating sputum. Pulmonary tuberculosis was diagnosed with the Xpert MTB/RIF assay. This study assessed sputum Acid Fast Bacilli (AFB) staining, chest X-rays with active pulmonary tuberculosis, characteristics of Bronchoalveolar lavage (BAL), and bronchoscopic findings based on the Chung classification. The BAL of polymerase chain reaction analysis using RD9 and TbD1 primers to determine MTBC species.

RESULTS: Out of the 30 cases, M. tuberculosis and Mycobacterium bovis 24 (80.0%) and 6 (20.0%) were identified in BAL fluid. There were 12 cases (40.0%) with AFB sputum test, and 25 (83.3%) of the Xpert MTB/RIF detected tuberculosis cases. All chest X-rays showed infiltrated and 22 (73.3%) pulmonary ectasis. There was a significant difference in MTBC species between sputum and BAL fluid (p < 0.05). The ulcerative type of bronchoscopy findings was significantly different in MTBC species (p < 0.05) and there was no macroscopic BAL fluid difference (p > 0.05).

CONCLUSIONS: Bronchoscopy is a specimen collection technique that is beneficial in determining the diagnosis of MTBC. Analysis of BAL with molecular methods contributes to identifying MTBC species quickly and accurately.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Are Updated Every Year for the Tuberculosis. Geneva: World Health Organization; 2020. Available from: https://www.who.int/tb/publications/global_ report/en [Last accessed on 2022 Apr 15].

Moule MG, Cirillo JD. Mycobacterium tuberculosis Dissemination plays a critical role in pathogenesis. Front Cell Infect Microbiol. 2020;10:65. https://doi.org/10.3389/fcimb.2020.00065 PMid:32161724 DOI: https://doi.org/10.3389/fcimb.2020.00065

Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, et al. Global tuberculosis report 2020 reflections on the global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;1(1):S7-12. https:/doi.org/10.1016/j.ijid.2021.02.107 PMid:33716195 DOI: https://doi.org/10.1016/j.ijid.2021.02.107

Ahmad RA, Matthys F, Dwihardiani B, Rintiswati N, De Vlas SJ, Mahendradhata Y, et al. Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia. BMC Public Health. 2012;12(1):132. https://doi.org/10.1186/1471-2458-12-132 PMid:22333111 DOI: https://doi.org/10.1186/1471-2458-12-132

Yanti B, Mulyadi M, Amin M, Harapan H, Mertaniasih NM, Soetjipto S. The role of Mycobacterium tuberculosis complex species on apoptosis and necroptosis state of macrophages derived from active pulmonary tuberculosis patients. BMC Res Notes. 2020;13(1):415. https://doi.org/10.1186/ s13104-020-05256-2 PMid:32887662 DOI: https://doi.org/10.1186/s13104-020-05256-2

Baya B, Diarra B, Diabate S, Kone B, Goita D, Sarro S, et al. Association of Mycobacterium africanum infection with slower disease progression compared with Mycobacterium tuberculosis in Malian patients with tuberculosis. Am J Trop Med Hyg. 2020;102(1):36-41. https://doi.org/10.4269/ajtmh.19-0264 PMid:31733052 DOI: https://doi.org/10.4269/ajtmh.19-0264

De Jong BC Antonio M, Gagneux S. Mycobacterium africanum review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis. 2010;4(9):e744. https://doi.org/10.1371/journal.pntd.0000744 PMid:20927191 DOI: https://doi.org/10.1371/journal.pntd.0000744

Forrellad MA, Klepp LI, Gioffré A, García JS, Morbidoni HR, Santangelo M, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1):3-66. https://doi.org/10.4161/viru.22329 PMid:23076359 DOI: https://doi.org/10.4161/viru.22329

Caulfield AJ, Wengenack NL. Diagnosis of active tuberculosis disease : From microscopy to molecular techniques. J Clin Tuberc Other Mycobact Dis. 2016;4:33-43. https://doi.org/10.1016/j.jctube.2016.05.005 PMid:31723686 DOI: https://doi.org/10.1016/j.jctube.2016.05.005

Mokaddas E, Ahmad S, Eldeen H. Performance comparison of

geneXpert MTB/RIF and probetec ET tests for rapid molecular diagnosis of extrapulmonary tuberculosis in a Low TB/MDR-TB incidence country. Med Princ Pract. 2021;30(3):277-84. https://doi.org/10.1159/000515254 PMid:33592621 DOI: https://doi.org/10.1159/000515254

Shen G, Chiou C, Hu ST, Wu KM, Chen JH. Rapid identification of the Mycobacterium tuberculosis complex by combining the ESAT-6/CFP-10 immunochromatographic assay and smear morphology. J Clin Microbiol. 2011;49(3):902-7. https://doi.org10.1128/JCM.00592-10 PMid:21159936 DOI: https://doi.org/10.1128/JCM.00592-10

Goosen WJ, Kerr TJ, Kleynhans L, Warren RM, Van Helden PD, Persing DH, et al. The Xpert MTB/RIF ultra assay detects Mycobacterium tuberculosis complex DNA in white rhinoceros (Ceratotherium simum) and African elephants (Loxodonta africana). Sci Rep. 2020;10(1):14482. https://doi.org/10.1038/s41598-020-71568-9 PMid:32879401 DOI: https://doi.org/10.1038/s41598-020-71568-9

Theron G, Peter J, Meldau R, Khalfey H, Gina P, Matinyena B, et al. Accuracy and impact of Xpert MTB/RIF for the diagnosis of smear-negative or sputum-scarce tuberculosis using bronchoalveolar lavage fluid. Thorax. 2013;68(11):1043-51. https://doi.org/10.1136/thoraxjnl-2013-203485 PMid:23811536 DOI: https://doi.org/10.1136/thoraxjnl-2013-203485

Ahmad M, Ibrahim WH, Sarafandi SA, Shahzada KS, Ahmed S, Haq IU, et al. Diagnostic value of bronchoalveolar lavage in the subset of patients with negative sputum/smear and mycobacterial culture and a suspicion of pulmonary tuberculosis. Int J Infect Dis. 2019;82:96-101. https://doi.org/10.1016/j.ijid.2019.03.021 PMid:30904678 DOI: https://doi.org/10.1016/j.ijid.2019.03.021

Kim YW, Kwon BS, Lim SY, Lee YJ, Cho YJ, Yoon HI, et al. Diagnostic value of bronchoalveolar lavage and bronchial washing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis : A randomized study. Clin Microbiol Infect. 2020;26(7):911-6. https://doi.org/10.1016/j.cmi.2019.11.013 PMid:31759097 DOI: https://doi.org/10.1016/j.cmi.2019.11.013

Sun Y, Zhang Q, Zhang Q, Liu C, Zhang H, Fu Y. Diagnostic efficacy of xpert MTB/RIF assay in bronchoalveolar lavage fluid for tracheobronchial tuberculosis : A retrospective analysis. Front Med. 2021;8:682107. https://doi.org/10.3389/fmed.2021.682107 PMid:34485328 DOI: https://doi.org/10.3389/fmed.2021.682107

Yan L, Zhang Q, Xiao H. Clinical diagnostic value of simultaneous amplification and testing for the diagnosis of sputum-scarce pulmonary tuberculosis. BMC Infect Dis. 2017;17(545):1-6. https://doi.org/10.1186/s12879-017-2647-7 PMid:28779754 DOI: https://doi.org/10.1186/s12879-017-2647-7

Güven S, Yilmaz E, Kutbay H, Sariyildiz S, Dalar L, Poluman A. The diagnostic value of polymerase chain reaction (PCR) in bronchioalveolar lavage. East J Med 2004;9(1):7-12.

Jarvela J, Moyer M, Leahy P, Bonfield T, Fletcher D, Mkono WN, et al. Mycobacterium tuberculosis-induced bronchoalveolar lavage gene expression signature in latent tuberculosis infection is dominated by pleiotropic effects of CD4 T cell-dependent IFN-γ production despite the presence of polyfunctional t cells within the. J Immunol. 2019;203(8):2194-209. https://doi.org/10.4049/jimmunol.1900230 PMid:31541022 DOI: https://doi.org/10.4049/jimmunol.1900230

Kurashima, Kozo MA. A method for visual scoring of pulmonary Mycobacterium avium complex disease: NICE scoring system. Mycobacteriol Dis. 2013;3(2):3-7.

Rieder HL, Van Deun A, Kam KM, Kim SJ, Chonde TM, Trébucq A, et al. Priorities for Tuberculosis Bacteriology Services in Low-Income Countries. 2 ed. Paris: International Union Against Tuberculosis and Lung Disease; 2007. Available from: https://www.tbrieder.org/publications/books_english/red_ book.pdf [Last accessed on 2022 May 11].

Du Rand IA, Blaikley J, Booton R, Chaudhuri N, Gupta V, Khalid S, et al. British thoracic society guideline for diagnostic flexible bronchoscopy in adults. Thorax 2013;68(Suppl 1):i1-44. https://doi.org/10.1136/thoraxjnl-2013-203618 PMid:23860341 DOI: https://doi.org/10.1136/thoraxjnl-2013-203618

Chung HS, Lee JH. Bronchoscopic assessment of the evolution of endobronchial tuberculosis. Chest. 2000;117(2):385-92. https://doi.org/10.1378/chest.117.2.385 PMid:10669679 DOI: https://doi.org/10.1378/chest.117.2.385

Baughman RP. Technical aspects of bronchoalveolar lavage: Recommendations for a standard procedure. Semin Respir Crit Care Med. 2007;28(5):475-85. https://doi.org/10.1055/s-2007-991520 PMid:17975775 DOI: https://doi.org/10.1055/s-2007-991520

Parsons LM, Brosch R, Cole ST, Somoskövi Á, Loder A, Bretzel G, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol. 2002;40(7):2339- 45. https://doi.org/10.1128/JCM.40.7.2339-2345.2002 PMid:12089245 DOI: https://doi.org/10.1128/JCM.40.7.2339-2345.2002

Neves CP, Costa AG, Safe IP, Brito AD, Jesus JS, Kritski AL, et al. The role of mini-bronchoalveolar lavage fluid in the diagnosis of pulmonary tuberculosis in critically ill patients. BMC Infect Dis. 2020;20(1):299. https://doi.org/10.1186/s12879-020-04954-3 PMid:32188399 DOI: https://doi.org/10.1186/s12879-020-04954-3

Chen NH, Liu YC, Tsao TC, Wu TL, Hsieh MJ, Chuang ML, et al. Combined bronchoalveolar lavage and polymerase chain reaction in the diagnosis of pulmonary tuberculosis in smear- negative patients. Int J Tuberc Lung Dis. 2002;6(4):350-5. PMid:11936745

Liu X, Hou XF, Gao L, Deng GF, Zhang MX, Deng QY, et al. Indicators for prediction of Mycobacterium tuberculosis positivity detected with bronchoalveolar lavage fluid. Infect Dis Poverty. 2018;7(1):22. https://doi.org/10.1186/s40249-018-0403-x PMid:29580276 DOI: https://doi.org/10.1186/s40249-018-0403-x

Morrone N, Abe NS. Bronchoscopic findings in patients with pulmonary tuberculosis. J Bronchol Interv Pulmonol. 2007;14(1):15-8. https://doi.org/10.1097/LBR.0b013e31802c2fcb DOI: https://doi.org/10.1097/LBR.0b013e31802c2fcb

Ribeiro SC, Gomes LL, Amaral EP, Andrade MR, Almeida FM, Rezende AL, et al. Mycobacterium Tuberculosis strains of the modern sublineage of the beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol. 2014;52(7):2615-24. https://doi.org/10.1128/JCM.00498-14 PMid:24829250 DOI: https://doi.org/10.1128/JCM.00498-14

Amin M, Yanti B, Harapan H, Mertaniasih NM. The role of Mycobacterium tuberculosis lineages on lung tissue damage and TNF-α level among tuberculosis patients, Indonesia. Clin Epidemiol Glob Health. 2019;7(3):263-7. https://doi. org/10.1016/j.cegh.2018.11.002 DOI: https://doi.org/10.1016/j.cegh.2018.11.002

Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011;7(3):e1001307. https://doi. org/10.1371/journal.p PMid:21408618 DOI: https://doi.org/10.1371/journal.ppat.1001307

Khan DF, Suleman M, Baijnath P, Perumal R, Moodley V, Mhlane Z, et al. Multiple microbiologic tests for tuberculosis improve diagnostic yield of bronchoscopy in medically complex patients. AAS Open Res. 2019;2:25. https://doi.org/10.12688/aasopenres.12980.1 PMid:32382702 DOI: https://doi.org/10.12688/aasopenres.12980.1

Heching M, Rosengarten D, Shitenberg D, Shtraichman O, Abdel-Rahman N, Unterman A, et al. Bronchoscopy for chronic unexplained cough: Use of biopsies and cultures increase diagnostic yield. J Bronchology Interv Pulmonol. 2020;27(1):30- 5. https://doi.org/10.1097/LBR.0000000000000629 PMid:31651543 DOI: https://doi.org/10.1097/LBR.0000000000000629

Gasparini S. Indications for diagnostic bronchoscopy in adults. Monaldi Arch Chest Dis. 2011;75(1):24-31. https://doi.org/10.4081/monaldi.2011.236 PMid:21626989 DOI: https://doi.org/10.4081/monaldi.2011.236

Downloads

Published

2023-01-01

How to Cite

1.
Yanti B, Soetjipto S, Mertaniasih NM, Susaniwati S, Amin M. The Usefulness of Bronchoscopy in the Diagnosis of Mycobacterium tuberculosis Complex Species Infection. Open Access Maced J Med Sci [Internet]. 2023 Jan. 1 [cited 2024 Apr. 24];11(B):150-5. Available from: https://oamjms.eu/index.php/mjms/article/view/11292

Similar Articles

You may also start an advanced similarity search for this article.