Nuclear Factor Erythroid 2-Related Factor 2 Versus Reactive Oxygen Species: Potential Therapeutic Approach on Fighting Liver Fibrosis

Authors

  • Lenny Setiawati Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Anatomy, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia https://orcid.org/0000-0002-7487-5948
  • Isabella Kurnia Liem Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-0138-2659
  • Firda Asma'ul Husna Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0001-6149-3054

DOI:

https://doi.org/10.3889/oamjms.2023.11334

Keywords:

HSC activation, liver fibrosis, mitochondrial dysfunction, Nrf2, ROS

Abstract

Chronic liver disease (CLD) is a progressive deterioration of the liver due to exposure to viruses, drugs, fat accumulation, and toxicity which lead to an imbalance between extracellular matrix accumulation and degradation. Accumulation of the extracellular matrix is a normal liver response at the beginning of the injury. However, increasing extracellular matrix accumulation leads to fibrosis, cirrhosis, and organ failure. Until today, liver transplant is the gold standard therapy for end-stage CLD. Unfortunately, the liver transplant itself faces difficulties such as finding a compatible donor and dealing with complications after treatment. This review provides further information about nuclear factor erythroid 2-related factor 2 (Nrf2) as an alternative approach to fight liver fibrosis. Transformation of hepatic stellate cell (HSC) to myofibroblast has been known as the main mechanism that occurs in fibrosis while epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction become the mechanism followed. In these conditions, oxidative stress is the great promoter which builds a vicious cycle leading to CLD progressivity. Hence, Nrf2 as antioxidant regulator becomes the potential target to break the cycle. While reactive oxygen species (ROS) in oxidative stress induce HSC activation, EMT, and mitochondrial dysfunction through activation of many signaling pathways, Nrf2 acts to diminish ROS directly by regulating secreted antioxidants and its scavenging action. Nrf2 also inactivates fibrosis signaling pathways and plays a role in maintaining mitochondrial health. Therefore, Nrf2 can be a potential target for liver fibrosis therapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(3):245-66. https://doi.org/10.1016/S2468-1253(19)30349-8 PMid:31981519 DOI: https://doi.org/10.1016/S2468-1253(19)30349-8

Craig EV, Heller MT. Complications of liver transplant. Abdom Radiol (NY). 2021;46(1):43-67. https://doi.org/10.1007/s00261-019-02340-5 PMid:31797026 DOI: https://doi.org/10.1007/s00261-019-02340-5

Kuramochi M, Izawa T, Pervin M, Bondoc A, Kuwamura M, Yamate J. The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats. Exp Toxicol Pathol. 2016;68(8):471-7. https://doi.org/10.1016/j.etp.2016.06.005 PMid:27522298 DOI: https://doi.org/10.1016/j.etp.2016.06.005

Wei M, Zhang Y, Zhang H, Huang Z, Miao H, Zhang T, et al. HMGB1 induced endothelial to mesenchymal transition in liver fibrosis: The key regulation of early growth response factor 1. Biochim Biophys Acta Gen Subj. 2022;1866(10):130202. https://doi.org/10.1016/j.bbagen.2022.130202 PMid:35820641 DOI: https://doi.org/10.1016/j.bbagen.2022.130202

Han YH, Choi H, Kim HJ, Lee MO. Chemotactic cytokines secreted from kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci. 2022;306:120846. https://doi.org/10.1016/j.lfs.2022.120846 PMid:35914587 DOI: https://doi.org/10.1016/j.lfs.2022.120846

Dai S, Liu F, Qin Z, Zhang J, Chen J, Ding WX, et al. Kupffer cells promote T-cell hepatitis by producing CXCL10 and limiting liver sinusoidal endothelial cell permeability. Theranostics. 2020;10(16):7163-77. https://doi.org/10.7150/thno.44960 PMid:32641985 DOI: https://doi.org/10.7150/thno.44960

Shu G, Dai C, Yusuf A, Sun H, Deng X. Limonin relieves TGF- β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade. J Nutr Biochem. 2022;107:109039. https://doi.org/10.1016/j.jnutbio.2022.109039 PMid:35533902 DOI: https://doi.org/10.1016/j.jnutbio.2022.109039

Yu Z, Xie X, Su X, Lu H, Song S, Liu C, et al. ATRA-mediated- crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury. J Cell Signal. 2022;93:110304. https://doi.org/10.1016/j.cellsig.2022.110304 PMid:35278669 DOI: https://doi.org/10.1016/j.cellsig.2022.110304

Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine. 2019;40:43-55. https://doi.org/10.1016/j.ebiom.2019.01.009 PMid:30639416 DOI: https://doi.org/10.1016/j.ebiom.2019.01.009

Yu J, Hu Y, Gao Y, Li Q, Zeng Z, Li Y, et al. Kindlin-2 regulates hepatic stellate cells activation and liver fibrogenesis. Cell Death Discov. 2018;4:34. https://doi.org/10.1038/s41420-018-0095-9 PMid:30245857 DOI: https://doi.org/10.1038/s41420-018-0095-9

Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020;73(5):1144-54. https://doi.org/10.1016/j.jhep.2020.04.044 PMid:32389810 DOI: https://doi.org/10.1016/j.jhep.2020.04.044

Burtenshaw D, Hakimjavadi R, Redmond EM, Cahill PA. Nox, reactive oxygen species and regulation of vascular cell fate. Antioxidants (Basel). 2017;6(4):90. https://doi.org/10.3390/antiox6040090 PMid:29135921 DOI: https://doi.org/10.3390/antiox6040090

Thannickal VJ, Zhou Y, Gaggar A, Duncan SR. Fibrosis: Ultimate and proximate causes. J Clin Invest. 2014;124(11):4673-7. https://doi.org/10.1172/JCI74368 PMid:25365073 DOI: https://doi.org/10.1172/JCI74368

Han M, Liu X, Liu S, Su G, Fan X, Chen J, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic stellate cell (HSC) activation and liver fibrosis in C57BL6 mouse via activating Akt and NF-KB signaling pathways. Toxicol Lett. 2017;273:10-9. https://doi.org/10.1016/j.toxlet.2017.03.013 PMid:28302560 DOI: https://doi.org/10.1016/j.toxlet.2017.03.013

Gumeni S, Papanagnou ED, Manola MS, Trougakos IP. Nrf2 activation induces mitophagy and reverses Parkin/Pink1 knock down-mediated neuronal and muscle degeneration phenotypes. Cell Death Dis. 2021;12(7):671. https://doi.org/10.1038/ s41419-021-03952-w PMid:34218254 DOI: https://doi.org/10.1038/s41419-021-03952-w

Liao J, Zhang Z, Yuan Q, Luo L, Hu X. The mouse Anxa6/ miR-9-5p/Anxa2 axis modulates TGF-β1-induced mouse hepatic stellate cell (mHSC) activation and CCl4-caused liver fibrosis. Toxicol Lett. 2022;362:38-49. https://doi.org/10.1016/j.toxlet.2022.04.004 PMid:35483553 DOI: https://doi.org/10.1016/j.toxlet.2022.04.004

Xu Z, He B, Jiang Y, Zhang M, Tian Y, Zhou N, et al. Igf2bp2 knockdown improves CCl4-induced liver fibrosis and TGF-β- activated mouse hepatic stellate cells by regulating Tgfbr1. Int Immunopharmacol. 2022;110:108987. https://doi.org/10.1016/j.intimp.2022.108987 PMid:35820364 DOI: https://doi.org/10.1016/j.intimp.2022.108987

Wang H, Che J, Cui K, Zhuang W, Li H, Sun J, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1 mediated activation of TAK1/MAPK and NF-KB pathways in vitro and in vivo. Phytomedicine. 2021;88:153609. https://doi.org/10.1016/j.phymed.2021.153609 PMid:34126414 DOI: https://doi.org/10.1016/j.phymed.2021.153609

Xiang D, Zou J, Zhu X, Chen X, Luo J, Kong L, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020;78:153294. https://doi.org/10.1016/j.phymed.2020.153294 PMid:32771890 DOI: https://doi.org/10.1016/j.phymed.2020.153294

Syed AM, Kundu S, Ram C, Kulhari U, Kumar K, Mugale MN, et al. Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/ Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice. Free Radic Biol Med. 2022;186:17-30. https://doi.org/10.1016/j.phymed.2020.153294 PMid:35513128 DOI: https://doi.org/10.1016/j.freeradbiomed.2022.04.019

Wang Y, Sun Y, Zuo L, Wang Y, Huang Y. ASIC1a promotes high glucose and PDGF-induced hepatic stellate cell activation by inducing autophagy through CaMKKβ/ERK signaling pathway. Toxicol Lett. 2019;300:1-9. https://doi.org/10.1016/j.toxlet.2018.10.003 PMid:30291941 DOI: https://doi.org/10.1016/j.toxlet.2018.10.003

Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK, et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology. 2016;64:232-44. https://doi.org/10.1002/hep.28542 PMid:26970079 DOI: https://doi.org/10.1002/hep.28542

Accora BZ, Storm G, Bansal R. Inhibition of canonical WNT signaling pathway by B-catenin/CBPinhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):804-18. https://doi.org/10.1016/j.bbadis.2017.12.001 PMid:29217140 DOI: https://doi.org/10.1016/j.bbadis.2017.12.001

Kazlauskas A. PDGFs and their receptors. Gene. 2017;614:1-7. https://doi.org/10.1016/j.gene.2017.03.003 PMid:28267575 DOI: https://doi.org/10.1016/j.gene.2017.03.003

Pang Y, Zhang L, Liu Q, Peng H, He J, Jin H, et al. NRF2/ PGC-1-mediated mitochondrial biogenesis contributes to T-2 toxin-induced toxicity in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol. 2022;451:116167. https://doi.org/10.1016/j.taap.2022.116167 PMid:35842139 DOI: https://doi.org/10.1016/j.taap.2022.116167

Arellanes-Robledo J, Reyes-Gordillo K, Ibrahim J, Leckey L, Shah R, Lakshman MR. Ethanol targets nucleoredoxin/dishevelled interactions and stimulates phosphatidylinositol 4-phosphate production in vivo and in vitro. Biochem Pharmacol. 2018;156:135-46. https://doi.org/10.1016/j.bcp.2018.08.021 PMid:30125555 DOI: https://doi.org/10.1016/j.bcp.2018.08.021

Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/B-catenin. Chemosphere. 2021;263:128125. https://doi.org/10.1016/j.chemosphere.2020.128125 PMid:33297114 DOI: https://doi.org/10.1016/j.chemosphere.2020.128125

Staehlke S, Haack F, Waldner AC, Koczan D, Moerke C, Mueller P, et al. ROS dependent Wnt/β-catenin pathway and its regulation on defined micro-pillars – A combined in vitro and in silico study. Cells. 2020;9(8):1784. https://doi.org/10.1016/j.chemosphere.2020.128125 PMid:32726949 DOI: https://doi.org/10.3390/cells9081784

Kwapisz O, Górka J, Korlatowicz A, Kotlinowski J, Waligórska A, Marona P, et al. Fatty acids and a high-fat diet induce epithelial- mesenchymal transition by activating TGFβ and β-catenin in liver cells. Int J Mol Sci. 2021;22(3):1272. https://doi.org/10.3390/ijms22031272 PMid:33525359 DOI: https://doi.org/10.3390/ijms22031272

Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation. J Biol Chem. 2014;289(40):27937-51. https://doi.org/10.1074/jbc.M114.573519 PMid:25124032 DOI: https://doi.org/10.1074/jbc.M114.573519

Salloum S, Jeyarajan AJ, Kruger AJ, Holmes JA, Shao T, Sojoodi M, et al. Fatty acids activate the transcriptional coactivator YAP1 to promote liver fibrosis via p38 mitogen-activated protein kinase. Cell Mol Gastroenterol Hepatol. 2021;12(4):1297-310. https://doi.org/10.1016/j.jcmgh.2021.06.003 PMid:34118488 DOI: https://doi.org/10.1016/j.jcmgh.2021.06.003

Yu H, Yao Y, Bu F, Chen Y, Wu Y, Yang Y, et al. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol Immunol. 2019;107:29-40. https://doi.org/10.1016/j.molimm.2019.01.004 PMid:30639476 DOI: https://doi.org/10.1016/j.molimm.2019.01.004

Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429-37. https://doi.org/10.1172/JCI36183 PMid:19487819 DOI: https://doi.org/10.1172/JCI36183

Yazaki K, Matsuno Y, Yoshida K, Sherpa M, Nakajima M, MatsuyamaM,etal.ROS-Nrf2pathwaymediatesthedevelopment of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. Eur J Cell Biol. 2021;100(7-8):151181. https://doi.org/10.1016/j.ejcb.2021.151181 PMid:34763128 DOI: https://doi.org/10.1016/j.ejcb.2021.151181

Guo Y, Xu X, Dong H, Shen B, Zhu J, Shen Z, et al. Loss of YB-1 alleviates liver fibrosis by suppressing epithelial-mesenchymal transition in hepatic progenitor cells. Biochim Biophys Acta Mol Basis Dis. 2022;1868(11):166510. https://doi.org/10.1016/j.bbadis.2022.166510 PMid:35926755 DOI: https://doi.org/10.1016/j.bbadis.2022.166510

Guarino AM, Troiano A, Pizzo E, Bosso A, Vivo M, Pinto G, et al. Oxidative stress causes enhanced secretion of YB-1 protein that restrains proliferation of receiving cells. Genes (Basel). 2018;9(10):513. https://doi.org/10.3390/genes9100513 PMid:30360431 DOI: https://doi.org/10.3390/genes9100513

Chi Q, Xu T, He Y, Li Z, Tang X, Fan X, et al. Polystyrene nanoparticle exposure supports ROS-NLRP3 axis- dependent DNA-NET to promote liver inflammation. J Hazard Mater. 2022;439:129502. https://doi.org/10.1016/j.jhazmat.2022.129502 PMid:35868089 DOI: https://doi.org/10.1016/j.jhazmat.2022.129502

Franquesa AG, Perez PG, Kulis M, Szczepanowska K, Dahdah N, Gomez SM, et al. Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol. 2022;54:102353. https://doi.org/10.1016/j.redox.2022.102353 PMid:35777200 DOI: https://doi.org/10.1016/j.redox.2022.102353

Xiao B, Cui Y, Li B, Zhang J, Zhang X, Song M, et al. ROS antagonizes the protection of Parkin-mediated mitophagy against aluminum-induced liver inflammatory injury in mice. Food Chem Toxicol. 2022;165:113126. https://doi.org/10.1016/j.fct.2022.113126 PMid:35569598 DOI: https://doi.org/10.1016/j.fct.2022.113126

Yang B, Wang Y, Fang C, Song E, Song Y. Polybrominated diphenyl ether quinone exposure leads to ROS-driven lysosomal damage, mitochondrial dysfunction and NLRP inflammasome activation. Environ Pollut. 2022;311:119846. https://doi.org/10.1016/j.envpol.2022.119846 PMid:35944775 DOI: https://doi.org/10.1016/j.envpol.2022.119846

Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784-99.e5. https://doi.org/10.1016/j.cmet.2019.08.003 PMid:31474566 DOI: https://doi.org/10.1016/j.cmet.2019.08.003

Meng Q, Chen R, Chen C, Su K, Li W, Tang L, et al. Transcription factors Nrf2 and NF-κB contribute to inflammation and apoptosis induced by intestinal ischemia-reperfusion in mice. Int J Mol Med. 2017;40:1731-40. https://doi.org/10.3892/ijmm.2017.3170 PMid:29039475 DOI: https://doi.org/10.3892/ijmm.2017.3170

Zhou J, Zheng Q, Chen Z. The Nrf2 pathway in liver diseases. Front Cell Dev Biol. 2022;10:826204. https://doi.org/10.3389/fcell.2022.826204 PMid:35223849 DOI: https://doi.org/10.3389/fcell.2022.826204

Poon A, Saini H, Sethi S, O’Sullivan GA, Plun-Favreau H, Wray S, et al. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Rep. 2021;16(5):1276-89. https://doi.org/10.1016/j.stemcr.2021.03.030 PMid:33891871 DOI: https://doi.org/10.1016/j.stemcr.2021.03.030

Hao H, Xie F, Xu F, Wang Q, Wu Y, Zhang D. LipoxinA4 analog BML-111 protects podocytes cultured in high-glucose medium against oxidative injury via activating Nrf2 pathway. Int Immunopharmacol. 2022;111:109170. https://doi.org/10.1016/j.intimp.2022.109170 PMid:36007391 DOI: https://doi.org/10.1016/j.intimp.2022.109170

Rubio V, García-Pérez AI, Herráez A, Diez JC. Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells. Chem Biol Interact. 2018;294:158-66. https://doi.org/10.1016/j.cbi.2018.08.015 PMid:30171828 DOI: https://doi.org/10.1016/j.cbi.2018.08.015

Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26:2300-13. https://doi.org/10.1038/s41418-019-0303-z PMid:30778200 DOI: https://doi.org/10.1038/s41418-019-0303-z

Tonelli C, Chio II, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727-45. https://doi.org/10.1089/ars.2017.7342 PMid:28899199 DOI: https://doi.org/10.1089/ars.2017.7342

Prestigiacomo V, Suter-Dick L. Nrf2 protects stellate cells from Smad-dependent cell activation. PLoS One. 2018;13(7):e0201044. https://doi.org/10.1371/journal.pone.0201044 PMid:30028880 DOI: https://doi.org/10.1371/journal.pone.0201044

Sa’dyah NA, Putra A, Dirja BT, Hidayah N, Azzahara SY, Irawan RC. Suppression of transforming growth factor-β by mesenchymal stem-cells accelerates liver regeneration in liver fibrosis animal model. Univ Med. 2021;40(1):29-35. Available from: https://univmed.org/ejurnal/index.php/medicina/article/ view/107957 [Last accessed on 2022 Oct 27]. DOI: https://doi.org/10.18051/UnivMed.2021.v40.29-35

Hu B, Wei H, Song Y, Chen M, Fan Z, Qiu R, et al. NF-KB and Keap1 interaction represses Nrf2-mediated antioxidant response in rabbit hemorrhagic disease virus infection. J Virol. 2020;94(10):e00016-20. https://doi.org/10.1128/JVI.00016-20 PMid:32161178 DOI: https://doi.org/10.1128/JVI.00016-20

Fernandez-Gines R, Encinar JA, Hayes JD, Oliva B, Rodriguez- Franco MI, Rojo AI, et al. An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter B-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biol. 2022;55:102428. https://doi.org/10.1016/j.redox.2022.102396 PMid:35839629 DOI: https://doi.org/10.1016/j.redox.2022.102428

Qin S, Jiang C, Gao J. Transcriptional factor Nrf2 is essential for aggresome formation during proteasome inhibition. Biomed Rep. 2019;11(6):241-52. https://doi.org/10.3892/br.2019.1247 PMid:31798869 DOI: https://doi.org/10.3892/br.2019.1247

Galle-Treger L, Helou DG, Quach C, Howard E, Hurrell BP, Muench GR, et al. Autophagy impairment in liver CD11c+ cells promotes non-alcoholic fatty liver disease through production of IL-23. Nat Commun. 2022;13(1):1440. https://doi.org/10.1038/s41467-022-29174-y PMid:35301333 DOI: https://doi.org/10.1038/s41467-022-29174-y

Yue Z, Jiang Z, Ruan B, Duan J, Song P, Liu J, et al. Disruption of myofibroblastic Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci. 2021;17(9):2135-46. https://doi.org/10.7150/ijbs.60056 PMid:34239344 DOI: https://doi.org/10.7150/ijbs.60056

Tang G, Weng Z, Song J, Chen Y. Reversal effect of Jagged1 signaling inhibition on CCl4-induced hepatic fibrosis in rats. Oncotarget. 2017;8:60778-88. https://doi.org/10.18632/oncotarget.18484 PMid:28977825 DOI: https://doi.org/10.18632/oncotarget.18484

Tian B, Zhao Y, Sun H, Zhang Y, Yang J, Brasier A. BRD4 mediates NF-kB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am J Physiol. 2016;311(6):L1183-201. https://doi.org/10.1152/ajplung.00224.2016 PMid:27793799 DOI: https://doi.org/10.1152/ajplung.00224.2016

Shin JM, Lee KM, Lee HJ, Yun JH, Nho CW. Physalin A regulates the Nrf2 pathway through ERK and p38 for induction of detoxifying enzymes. BMC Complement Altern Med. 2019;19(1):101. https://doi.org/10.1186/s12906-019-2511-y PMid:31072358 DOI: https://doi.org/10.1186/s12906-019-2511-y

Ahn CB, Je JY, Kim YS, Park SJ, Kim BI. Induction of Nrf2-mediated phase II detoxifying/antioxidant enzymes in vitro by chitosan-caffeic acid against hydrogen peroxide- induced hepatotoxicity through JNK/ERK pathway. Mol Cell Biochem. 2017;424(1-2):79-86. https://doi.org/10.1007/s11010-016-2845-4 PMid:27743232 DOI: https://doi.org/10.1007/s11010-016-2845-4

Downloads

Published

2023-01-05

How to Cite

1.
Setiawati L, Liem IK, Husna FA. Nuclear Factor Erythroid 2-Related Factor 2 Versus Reactive Oxygen Species: Potential Therapeutic Approach on Fighting Liver Fibrosis. Open Access Maced J Med Sci [Internet]. 2023 Jan. 5 [cited 2024 Nov. 26];11(F):115-23. Available from: https://oamjms.eu/index.php/mjms/article/view/11334

Issue

Section

Narrative Review Article

Categories