Predictors of Failure Following Fixation of Trochanteric Fractures

Authors

  • Achraf Abdennadher Department of Orthopedics, University of Tunis Manar, Military Hospital of Tunis, Tunis, Tunisia https://orcid.org/0000-0002-4263-2909
  • Safa Hjaiej Medical University, University of Tunis Manar, Tunis, Tunisia https://orcid.org/0000-0001-5046-5576
  • Rabie Ayari Medical University, University of Tunis Manar, Tunis, Tunisia https://orcid.org/0000-0001-5949-0022
  • Youssef Mallat Department of Orthopedics, University of Tunis Manar, Military Hospital of Tunis, Tunis, Tunisia
  • Ramy Triki Medical University
  • Khalil Amri Department of Orthopedics, University of Tunis Manar, Military Hospital of Tunis, Tunis, Tunisia

DOI:

https://doi.org/10.3889/oamjms.2023.11359

Keywords:

Trochanteric fractures, Fixation, Elderly, Failure predictors

Abstract

BACKGROUND: Trochanteric fractures are frequent and mainly affect the elderly causing autonomy loss. Their incidence is increasing, and they are associated with substantial morbidity and high cost.

AIM: The aim of our study was to identify epidemiological, radiological, and technical predictors of failure of trochanteric fracture fixation in the elderly.

METHODS: We conducted a retrospective study including 188 patients aged over 65 years, who underwent surgery for trochanteric fractures, in the period between 2015 and 2020 at the orthopedics department of the Military Hospital of Tunis. The minimum follow-up was 12 months.

RESULTS: Thirty-four patients had a mechanical failure (18.1% of cases), including 12 cases of cephalic screw migration (CSM) (6.4%), 12 cases of disassembly (6.4%), eight cases of malunion (4.3%), and four cases of non-union (2.1%). Bone fragility with a Singh index ≤III was associated with CSM, disassembly of fixation material, and malunion (respectively, p < 0.001; p = 0.01 and p = 0.044). Reduction quality was associated with disassembly (p < 0.001) and CSM (p = 0.004). Eccentric screw positioning on anteroposterior (p < 0.001) and lateral views (p = 0.018), high tip-apex distance (TAD) (p < 0.001), and calcar-referenced TAD (p < 0.001) were predictive of CSM. Logistic regression analysis showed that poor reduction quality was an independent factor associated with the occurrence of mechanical complications. Functional outcomes were assessed using Parker and Postel Merle d’Aubigné scores.

CONCLUSION: To minimize the risk of mechanical complications, the surgeon must pay close attention to the fracture reduction and to the correct positioning of the cervical screw.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cohen-Bittan J, Forest A, Boddaert J. Hip fracture in elderly patients: Emergency management and indicators. Ann Fr Anesth Reanim. 2011;30(10):e41-3. https://doi.org/10.1016/j.annfar.2011.07.003 PMid:21917412 DOI: https://doi.org/10.1016/j.annfar.2011.07.003

Sepah YJ, Umer M, Khan A, Niazi AU. Functional outcome, mortality and in-hospital complications of operative treatment in elderly patients with hip fractures in the developing world. Int Orthop. 2010;34(3):431-5. https://doi.org/10.1007/s00264-009-0803-4 PMid:19471932 DOI: https://doi.org/10.1007/s00264-009-0803-4

Waast D, Touraine D, Wessely L, Ropars M, Coipeau P, Perrier C, et al. Pertrochanteric fractures in elderly subjects aged over 75. Rev Chir Orthop Reparatrice Appar Mot 2007;93 4 Suppl:2S33-46.

Roberts SE, Goldacre MJ. Time trends and demography of mortality after fractured neck of femur in an English population, 1968-98: Database study. BMJ. 2003;327(7418):771-5. https://doi.org/10.1136/bmj.327.7418.771 PMid:14525871 DOI: https://doi.org/10.1136/bmj.327.7418.771

Guerra MT, Pasqualin S, Souza MP, Lenz R. Functional recovery of elderly patients with surgically-treated intertrochanteric fractures: Preliminary results of a randomised trial comparing the dynamic hip screw and proximal femoral nail techniques. Injury. 2014;45 Suppl 5:S26-31. https://doi.org/10.1016/S0020-1383(14)70017-8 PMid:25528621 DOI: https://doi.org/10.1016/S0020-1383(14)70017-8

Liu W, Zhou D, Liu F, Weaver MJ, Vrahas MS. Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg. 2013;75(2):304-10. https://doi.org/10.1097/ TA.0b013e31829a2c43 PMid:23887564 DOI: https://doi.org/10.1097/TA.0b013e31829a2c43

Ender J. Per- und subtrochantere Oberschenkelbrüche. H. Unfallheilk. 1970;106:2-11.

Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 1970;52(3):457-67. DOI: https://doi.org/10.2106/00004623-197052030-00005

Parker MJ. Cutting-out of the dynamic hip screw related to its position. J Bone Joint Surg Br. 1992;74(4):625. https://doi.org/10.1302/0301-620X.74B4.1624529 PMid:1624529 DOI: https://doi.org/10.1302/0301-620X.74B4.1624529

Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal- Mousselard H, Khiami F. Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res. 2018;104(8):1183-7. https://doi.org/10.1016/j.otsr.2018.06.021 PMid:30342858 DOI: https://doi.org/10.1016/j.otsr.2018.06.021

Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Joint J. 2014;96-B(8):1029-34. https://doi.org/10.1302/0301-620X.96B8.33644 PMid:25086117 DOI: https://doi.org/10.1302/0301-620X.96B8.33644

Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77(7):1058-64. https://doi.org/10.2106/00004623-199507000-00012 PMid:7608228 DOI: https://doi.org/10.2106/00004623-199507000-00012

Parker MJ, Palmer CR. A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Br. 1993;75(5):797-8. https://doi.org/10.1302/0301-620X.75B5.8376443 PMid:8376443 DOI: https://doi.org/10.1302/0301-620X.75B5.8376443

D’Aubigne RM, Postel M. Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am 1954;36-A(3):451-75. DOI: https://doi.org/10.2106/00004623-195436030-00001

Barla M, Egrise F, Zaharia B, Bauer C, Parot J, Mainard D. Prospective assessment of trochanteric fracture managed by intramedullary nailing with controlled and limited blade back-out. Orthop Traumatol Surg Res. 2020;106(4):613-9. https://doi.org/10.1016/j.otsr.2019.11.028 PMid:32249158 DOI: https://doi.org/10.1016/j.otsr.2019.11.028

Simmermacher RK, Ljungqvist J, Bail H, Hockertz T, Vochteloo AJ, Ochs U, et al. The new proximal femoral nail antirotation (PFNA) in daily practice: Results of a multicentre clinical study. Injury. 2008;39(8):932-9. https://doi.org/10.1016/j.injury.2008.02.005 PMid:18582887 DOI: https://doi.org/10.1016/j.injury.2008.02.005

Gadegone WM, Salphale YS. Proximal femoral nail-an analysis of 100 cases of proximal femoral fractures with an average follow up of 1 year. Int Orthop. 2007;31(3):403-8. https://doi.org/10.1007/s00264-006-0170-3 PMid:16823585 DOI: https://doi.org/10.1007/s00264-006-0170-3

Nikoloski AN, Osbrough AL, Yates PJ. Should the tip-apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. J Orthop Surg Res. 2013;8:35. https://doi.org/10.1186/1749-799X-8-35 PMid:24135331 DOI: https://doi.org/10.1186/1749-799X-8-35

Mao W, Ni H, Li L, He Y, Chen X, Tang H, et al. Comparison of Baumgaertner and Chang reduction quality criteria for the assessment of trochanteric fractures. Bone Joint Res. 2019;8(10):502-8. https://doi.org/10.1302/2046-3758.810.BJR-2019-0032.R1 PMid:31728190 DOI: https://doi.org/10.1302/2046-3758.810.BJR-2019-0032.R1

Siwach RC, Rohilla R, Singh R, Singla R, Sangwan SS, Gogna P. Radiological and functional outcome in unstable, osteoporotic trochanteric fractures stabilized with dynamic helical hip system. Strategies Trauma Limb Reconstr. 2013;8(2):117-22. https://doi.org/10.1007/s11751-013-0166-7 PMid:23892534 DOI: https://doi.org/10.1007/s11751-013-0166-7

Pervez H, Parker MJ, Vowler S. Prediction of fixation failure after sliding hip screw fixation. Injury. 2004;35(10):994-8. https://doi.org/10.1016/j.injury.2003.10.028 PMid:15351665 DOI: https://doi.org/10.1016/j.injury.2003.10.028

Pu JS, Liu L, Wang GL, Fang Y, Yang TF. Results of the proximal femoral nail anti-rotation (PFNA) in elderly Chinese patients. Int Orthop. 2009;33(5):1441-4. https://doi.org/10.1007/s00264-009-0776-3 PMid:19367404 DOI: https://doi.org/10.1007/s00264-009-0776-3

Kim WY, Han CH, Park JI, Kim JY. Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop. 2001;25(6):360-2. https://doi.org/10.1007/s002640100287 PMid:11820441 DOI: https://doi.org/10.1007/s002640100287

Pseudarthroses Aseptiques des Os Longs. Revue Medicale Suisse. https://www.revmed.ch/revue-medicale-suisse/2013/revue-medicale-suisse-411/pseudarthroses-aseptiques-des-os-longs [Last accessed on 2021 Aug 08].

Gadegone WM, Salphale YS. Short proximal femoral nail fixation for trochanteric fractures. J Orthop Surg (Hong Kong). 2010;18(1):39-44. https://doi.org/10.1177/230949901001800109 PMid:20427832 DOI: https://doi.org/10.1177/230949901001800109

Lahoud JC, Asselineau A, Salengro S, Molina V, Bombart M. Sub-trochanteric fractures. A comparative study between gamma nail and angular osteosynthesis with lateral cortical support. Rev Chir Orthop Reparatrice Appar Mot. 1997;83(4):335-42. PMid:9452807

Ruecker AH, Rupprecht M, Gruber M, Gebauer M, Barvencik F, Briem D, et al. The treatment of intertrochanteric fractures: Results using an intramedullary nail with integrated cephalocervical screws and linear compression. J Orthop Trauma. 2009;23(1):22-30. https://doi.org/10.1097/BOT.0b013e31819211b2 PMid:19104300 DOI: https://doi.org/10.1097/BOT.0b013e31819211b2

Utrilla AL, Reig JS, Muñoz FM, Tufanisco CB. Trochanteric gamma nail and compression hip screw for trochanteric fractures: A randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma. 2005;19(4):229-33. https://doi.org/10.1097/01.bot.0000151819.95075.ad PMid:15795570 DOI: https://doi.org/10.1097/01.bot.0000151819.95075.ad

De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G. Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg Am. 2012;94(14):1266-72. https://doi.org/10.2106/JBJS.K.00357 PMid:22810396 DOI: https://doi.org/10.2106/JBJS.K.00357

Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: An evaluation of 937 patients. Int Orthop. 2010;34(8):1273-6. https://doi.org/10.1007/s00264-009-0866-2 PMid:19784649 DOI: https://doi.org/10.1007/s00264-009-0866-2

Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A. Critical factors in cut-out complication after gamma nail treatment of proximal femoral fractures. BMC Musculoskelet Disord. 2013;14:1. https://doi.org/10.1186/1471-2474-14-1 PMid:23281775 DOI: https://doi.org/10.1186/1471-2474-14-1

Andress HJ, Forkel H, Grubwinkler M, Landes J, Piltz S, Hertlein H, et al. Treatment of per-and subtrochanteric femoral fractures by gamma nails and modular hip prostheses. Differential indications and results. Unfallchirurg. 2000;103(6):444-51. https://doi.org/10.1007/s001130050564 PMid:10925646 DOI: https://doi.org/10.1007/s001130050564

Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br. 1990;72(1):26-31. https://doi.org/10.1302/0301-620X.72B1.2298790 PMid:2298790 DOI: https://doi.org/10.1302/0301-620X.72B1.2298790

Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-out in femoral intramedullary nailing. Injury. 2010;41(12):1312-6. https://doi.org/10.1016/j.injury.2010.08.009 PMid:20832795 DOI: https://doi.org/10.1016/j.injury.2010.08.009

Kraus M, Krischak G, Wiedmann K, Riepl C, Gebhard F, Jöckel JA, et al. Clinical evaluation of PFNA® and relationship between the tip-apex distance and mechanical failure. Unfallchirurg. 2011;114(6):470-8. https://doi.org/10.1007/s00113-011-1975-0 PMid:21626197 DOI: https://doi.org/10.1007/s00113-011-1975-0

Goffin JM, Pankaj P, Simpson AH. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: A subject-specific finite element study. J Orthop Res. 2013;31(4):596-600. https://doi.org/10.1002/jor.22266 PMid:23138576 DOI: https://doi.org/10.1002/jor.22266

Goffin JM, Jenkins PJ, Ramaesh R, Pankaj P, Simpson AH. What is the relevance of the tip-apex distance as a predictor of lag screw cut-out? PLoS One. 2013;8(8):e71195. https://doi.org/10.1371/journal.pone.0071195 PMid:24015184 DOI: https://doi.org/10.1371/journal.pone.0071195

Li S, Chang SM, Jin YM, Zhang YQ, Niu WX, Du SC, et al. A mathematical simulation of the tip-apex distance and the calcar-referenced tip-apex distance for intertrochanteric fractures reduced with lag screws. Injury. 2016;47(6):1302-8. https://doi.org/10.1016/j.injury.2016.03.029 PMid:27087281 DOI: https://doi.org/10.1016/j.injury.2016.03.029

Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH. Femoral head lag screw position for cephalomedullary nails: A biomechanical analysis. J Orthop Trauma. 2012;26(7):414-21. https://doi.org/10.1097/BOT.0b013e318229acca PMid:22337483 DOI: https://doi.org/10.1097/BOT.0b013e318229acca

Hancıoğlu S, Gem K, Tosyali HK, Okçu G. Clinical and radiological outcomes of trochanteric AO/OTA 31A2 fractures: Comparison between helical blade and lag screw-a retrospective cohort study. Z Orthop Unfall. 2022;160(3):278-86. https://doi.org/10.1055/a-1291-8619 PMid:33233011 DOI: https://doi.org/10.1055/a-1291-8619

Caruso G, Bonomo M, Valpiani G, Salvatori G, Gildone A, Lorusso V, et al. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter? Bone Joint Res. 2017;6(8):481-8. https://doi.org/10.1302/2046-3758.68.BJR-2016-0299.R1. PMid:28790037 DOI: https://doi.org/10.1302/2046-3758.68.BJR-2016-0299.R1

Traore M, Gogoua R, Kouame M, Yepie A, Anoumou M, Varango G. Mechanical complications after limb osteosynthesis: Analysis of etiologic factors in 42 cases. Open J Orthop. 2017;7(2):43-52. https://doi.org/10.4236/ojo.2017.72006 DOI: https://doi.org/10.4236/ojo.2017.72006

Goldhagen PR, O’Connor DR, Schwarze D, Schwartz E. A prospective comparative study of the compression hip screw and the gamma nail. J Orthop Trauma. 1994;8(5):367-72. https://doi.org/10.1097/00005131-199410000-00001 PMid:7996318 DOI: https://doi.org/10.1097/00005131-199410000-00001

Parker MJ, Pryor GA. Gamma versus DHS nailing for extracapsular femoral fractures. Meta-analysis of ten randomised trials. Int Orthop. 1996;20(3):163-8. https://doi.org/10.1007/s002640050055 PMid:8832319 DOI: https://doi.org/10.1007/s002640050055

Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;8(9):CD000093. https://doi.org/10.1002/14651858.CD000093.pub4 PMid:18646058 DOI: https://doi.org/10.1002/14651858.CD000093.pub5

Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL, et al. Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Joint Surg Am. 1998;80(5):618-30. https://doi.org/10.2106/00004623-199805000-00002 PMid:9611022 DOI: https://doi.org/10.2106/00004623-199805000-00002

Docquier PL, Manche E, Autrique JC, Geulette B. Complications associated with gamma nailing. A review of 439 cases. Acta Orthop Belg 2002;68(3):251-7. PMid:12152372

Bhandari M, Schemitsch E, Jönsson A, Zlowodzki M, Haidukewych GJ. Gamma nails revisited: Gamma nails versus compression hip screws in the management of intertrochanteric fractures of the hip: A meta-analysis. J Orthop Trauma. 2009;23(6):460-4. https://doi.org/10.1097/BOT.0b013e318162f67f PMid:19550235 DOI: https://doi.org/10.1097/BOT.0b013e318162f67f

McGilton KS, Chu CH, Naglie G, van Wyk PM, Stewart S, Davis AM. Factors influencing outcomes of older adults after undergoing rehabilitation for hip fracture. J Am Geriatr Soc. 2016;64(8):1601-9. https://doi.org/10.1111/jgs.14297 PMid:27351370 DOI: https://doi.org/10.1111/jgs.14297

Pedersen TJ, Lauritsen JM. Routine functional assessment for hip fracture patients. Acta Orthop. 2016;87(4):374-9. https://doi.org/10.1080/17453674.2016.1197534 PMid:27329799 DOI: https://doi.org/10.1080/17453674.2016.1197534

Martín-Martín LM, Arroyo-Morales M, Sánchez-Cruz JJ, Valenza-Demet G, Valenza MC, Jiménez-Moleón JJ. Factors influencing performance-oriented mobility after hip fracture. J Aging Health. 2015;27(5):827-42. https://doi.org/10.1177/0898264315569451 PMid:25649676 DOI: https://doi.org/10.1177/0898264315569451

Neuman MD, Silber JH, Magaziner JS, Passarella MA, Mehta S, Werner RM. Survival and functional outcomes after hip fracture among nursing home residents. JAMA Intern Med. 2014;174(8):1273-80. https://doi.org/10.1001/jamainternmed.2014.2362 PMid:25055155 DOI: https://doi.org/10.1001/jamainternmed.2014.2362

Yoon SH, Kim BR, Lee SY, Beom J, Choi JH, Lim JY. Influence of comorbidities on functional outcomes in patients with surgically treated fragility hip fractures: A retrospective cohort study. BMC Geriatr. 2021;21(1):283. https://doi.org/10.1186/s12877-021-02227-5 PMid:33910513 DOI: https://doi.org/10.1186/s12877-021-02227-5

Cary MP Jr, Pan W, Sloane R, Bettger JP, Hoenig H, Merwin EI, et al. Self-care and mobility following postacute rehabilitation for older adults with hip fracture: A multilevel analysis. Arch Phys Med Rehabil. 2016;97(5):760-71. https://doi.org/10.1016/j.apmr.2016.01.012 PMid:26836951 DOI: https://doi.org/10.1016/j.apmr.2016.01.012

Yoo JH, Kim TY, Chang JD, Kwak YH, Kwon YS. Factors influencing functional outcomes in united intertrochanteric hip fractures: A negative effect of lag screw sliding. Orthopedics. 2014;37(12):e1101-7. https://doi.org/10.3928/01477447-20141124-58 PMid:25437085 DOI: https://doi.org/10.3928/01477447-20141124-58

Chrischilles EA, Butler CD, Davis CS, Wallace RB. A model of lifetime osteoporosis impact. Arch Intern Med 1991;151(10):2026-32. PMid:1929691 DOI: https://doi.org/10.1001/archinte.151.10.2026

Downloads

Published

2023-01-24

How to Cite

1.
Abdennadher A, Hjaiej S, Ayari R, Mallat Y, Triki R, Amri K. Predictors of Failure Following Fixation of Trochanteric Fractures. Open Access Maced J Med Sci [Internet]. 2023 Jan. 24 [cited 2024 Nov. 21];11(B):170-7. Available from: https://oamjms.eu/index.php/mjms/article/view/11359

Similar Articles

You may also start an advanced similarity search for this article.