The Role of Digital Health in the Early Detection and Management of Obstetric Complications in the Community: A Systematic Review

Authors

  • Ermiza Latifah Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Indonesia, Jakarta, Indonesia
  • Kemal Siregar Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Indonesia, Jakarta, Indonesia
  • Delmaifanis Delmaifanis Department of Midwifery, Polytechnic of Health, Ministry of Health, Jakarta III, Indonesia https://orcid.org/0000-0002-7424-0619

DOI:

https://doi.org/10.3889/oamjms.2023.11391

Keywords:

Digital Healt (aPHR), early detection, obstetric complications, community

Abstract

BACKGROUND: According to the World Health Organization, obstetric complications are thought to be the cause of death for 10.7 million mothers worldwide. In developing countries like Indonesia, maternal mortality rates are still high. Compared to 2019, there were 418 more incidents of maternal death in 2020.

AIM: The goal of the study was to explain how much digital technology contributed to the early identification of risk factors for obstetric complications.

METHODS: The work stages were observed while conducting the review, and relevant publications from databases were used. These databases  included PubMed, Embase, ScienceDirect, ProQuest, and Scopus. The papers were retrieved between July 1, 2012, and June 30, 2022, using the keywords “pregnant lady” AND (Telemedicine OR “Mobile Health” OR Telehealth OR mHealth) AND (“Labor Complication” OR “Pregnancy  Complication” OR “Puerperal Disorder”). Forty-five articles that discussed early obstetric detection and management were obtained based on the established inclusion criteria and met the inclusion requirements.

RESULTS: The term “telemedicine applications” refers to the use of health communications technology to provide remote consultation, diagnosis, education, and treatment services to detect and diagnose pregnancy complications and manage pregnancy and care during pregnancy. Applications  for smartphones offer a tremendous deal of potential to enhance pregnant women’s health. Support is required for maternal health services to help with antenatal care services in the community setting. The program can identify and manage pregnancy-related issues like weight gain, diabetes mellitus, nausea, vomiting, HIV, hemolysis, and depression.

CONCLUSION: It is expected that this review would be able to identify any difficulties that mothers may face early on in their pregnancies. In addition, it is believed that existing applications would be able to manage the moms’ health and perform the necessary interventions and tactics to reduce difficulties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bonnell S, Griggs A, Avila G, Mack J, Bush RA, Vignato J, et al. Community health workers and use of mhealth: Improving identification of pregnancy complications and access to care in the Dominican republic. Health Promot Pract. 2018;19(3):331-40. https://doi.org/10.1177/1524839917708795 PMid:28578606 DOI: https://doi.org/10.1177/1524839917708795

Geleto A, Chojenta C, Mussa A, Loxton D. Barriers to access and utilization of emergency obstetric care at health facilities in sub-Saharan Africa-a systematic review protocol. Syst Rev. 2018;7(1):60. https://doi.org/10.1186/s13643-018-0720-y PMid:29661217 DOI: https://doi.org/10.1186/s13643-018-0720-y

Zhu XH, Tao J, Jiang LY, Zhang ZF. Role of usual healthcare combined with telemedicine in the management of high-risk pregnancy in Hangzhou, China. J Healthc Eng. 2019;2019:3815857. https://doi.org/10.1155/2019/3815857 DOI: https://doi.org/10.1155/2019/3815857

Salem A, Lacour O, Scaringella S, Herinianasolo J, Benski AC, Stancanelli G, et al. Cross-sectional survey of knowledge of obstetric danger signs among women in rural Madagascar. BMC Pregnancy Childbirth. 2018;18(1):46. https://doi.org/10.1186/s12884-018-1664-x PMid:29402226 DOI: https://doi.org/10.1186/s12884-018-1664-x

Cordasco KM, Katzburg JR, Katon JG, Zephyrin LC, Chrystal JG, Yano EM. Care coordination for pregnant veterans: VA’s maternity care coordinator telephone care program. Transl Behav Med. 2018;8(3):419-28. https://doi.org/10.1093/tbm/ ibx081 PMid:29800406 DOI: https://doi.org/10.1093/tbm/ibx081

Fatkhiyah N, Rejeki T, Atmoko D. Visit compliance antenatal care based on maternal factors. J SMART Kebidanan. 2020;7(1):29. https://doi.org/10.34310sjkb.v7i1.339 DOI: https://doi.org/10.34310/sjkb.v7i1.339

Velu AV, van Beukering MD, Schaafsma FG, Frings-Dresen MH, Mol BW, van der Post JA, et al. Barriers and facilitators for the use of a medical mobile app to prevent work-related risks in pregnancy: A qualitative analysis. JMIR Res Protoc. 2017;6(8):e163. https://doi.org/10.2196/resprot.7224 PMid:28830851 DOI: https://doi.org/10.2196/resprot.7224

Kodama T, Obayashi Y, Tanimura S, Miyata C, Nishide R, Murabata M, et al. A randomized controlled trial on primigravid women of text messaging intervention offering pregnancy and childbirth support. J UOEH. 2021;43(3):305-12. https://doi.org/10.7888/JUOEH.43.305 PMid:34483189 DOI: https://doi.org/10.7888/juoeh.43.305

Saleh A, Syahrul S, Hadju V, Andriani I, Restika I. Role of maternal in preventing stunting: A systematic review. Gac Sanit. 2021;35:S576-82. https://doi.org/10.1016/j.gaceta.2021.10.087 PMid:34929905 DOI: https://doi.org/10.1016/j.gaceta.2021.10.087

UNICEF dan WHO, “Pekan Menyusui Dunia: UNICEF dan WHO Menyerukan Pemerintah dan Pemangku Kepentingan Agar Mendukung Semua ibu Menyusui di Indonesia Selama COVID-19; 2020. Available from: https://www.who.int/indonesia/ news/detail/03-08-2020-pekan-menyusui-dunia-unicef-dan- who-menyerukan-pemerintah-dan-pemangku-kepentingan- agar-mendukung-semua-ibu-menyusui-di-indonesia-selama- covid-19 [Last accessed on 2022 Jul 22].

Aryawati W, Kesehatan D, Lampung P. Development of a planned and anticipatory high risk pregnancy and childbirth prevention model for Indonesian health policy. J Kebijakan Kesehatan Indones. 2016;5:89-93.

Holmes H, Palacios C, Wu Y, Banna J. Effect of a short message service intervention on excessive gestational weight gain in a low-income population: A randomized controlled trial. Nutrients. 2020;12(5):1428. https://doi.org/10.3390/nu12051428 PMid:32429069 DOI: https://doi.org/10.3390/nu12051428

Tripp N, Hainey K, Liu A, Poulton A, Peek M, Kim J, et al. An emerging model of maternity care: Smartphone, midwife, doctor Women Birth. 2014;27(1):64-7. https://doi.org/10.1016/j.wombi.2013.11.001 PMid:24295598 DOI: https://doi.org/10.1016/j.wombi.2013.11.001

Bush J, Barlow DE, Echols J, Wilkerson J, Bellevin K. Impact of a mobile health application on user engagement and pregnancy outcomes among Wyoming medicaid members. Telemed J E Health. 2017;23(11):891-8. https://doi.org/10.1089/tmj.2016.0242 PMid:28481167 DOI: https://doi.org/10.1089/tmj.2016.0242

Van Heerden A, Norris S, Tollman S, Richter L, Rotheram- Borus MJ. Collecting maternal health information from HIV- positive pregnant women using mobile phone-assisted face-to-face interviews in Southern Africa. J Med Internet Res. 2013;15(6):e116. https://doi.org/10.2196/jmir.2207 PMid:23748182 DOI: https://doi.org/10.2196/jmir.2207

Graham ML, Uesugi KH, Niederdeppe J, Gay GK, Olson CM. The theory, development, and implementation of an e-intervention to prevent excessive gestational weight gain: e-Moms Roc. Telemed J E Health. 2014;20(12):1135-42. https://doi.org/10.1089/tmj.2013.0354 PMid:25354350 DOI: https://doi.org/10.1089/tmj.2013.0354

Hantsoo L, Criniti S, Khan A, Moseley M, Kincler N, Faherty LJ, et al. A mobile application for monitoring and management of depressed mood in a vulnerable pregnant population. Psychiatr Serv. 2018;69(1):104-7. https://doi.org/10.1176/appi.ps.201600582 DOI: https://doi.org/10.1176/appi.ps.201600582

Carnwell R, Daly W. Strategies for the construction of a critical review of the literature. Nurse Educ Pract. 2001;1(2):57-63. https://doi.org/10.1054/nepr.2001.0008 PMid:19036245 DOI: https://doi.org/10.1054/nepr.2001.0008

Thomas T, Xu F, Sridhar S, Sedgwick T, Nkemere L, Badon SE, et al. A Web-based mhealth intervention with telephone support to increase physical activity among pregnant patients with overweight or obesity: Feasibility randomized controlled trial. JMIR Form Res. 2022;6(6):e33929. https://doi.org/10.2196/33929 PMid:35731565 DOI: https://doi.org/10.2196/33929

van den Heuvel JF, Teunis CJ, Franx A, Crombag NM, Bekker MN. Home-based telemonitoring versus hospital admission in high- risk pregnancies: A qualitative study on women’s experiences. BMC Pregnancy Childbirth. 2020;20(1):77. https://doi.org/10.1186/s12884-020-2779-4 PMid:32019499. DOI: https://doi.org/10.1186/s12884-020-2779-4

Archibong E, Konnaiyan KR, Kaplan H, Pyayt A. A mobile phone- based approach to detection of hemolysis. Biosens Bioelectron. 2017;88:204-9. https://doi.org/10.1016/j.bios.2016.08.030 PMid: 27567707 DOI: https://doi.org/10.1016/j.bios.2016.08.030

Yee LM, Leziak K, Jackson J, Strohbach A, Saber R, Niznik CM, et al. Patient and provider perspectives on a novel mobile health intervention for low-income pregnant women with gestational or Type 2 diabetes mellitus. J Diabetes Sci Technol. 2020;15(5):1121-33. https://doi.org/10.1177/1932296820937347 PMid:32627582 DOI: https://doi.org/10.1177/1932296820937347

Coleman J, Bohlin KC, Thorson A, Black V, Mechael P, Mangxaba J. et al. Effectiveness of an SMS-based maternal mHealth intervention to improve clinical outcomes of HIV- positive pregnant women. AIDS Care. 2017;29(7):890-7. https://doi.org/10.1080/09540121.2017.1280126 DOI: https://doi.org/10.1080/09540121.2017.1280126

Downs DS, Savage JS, Rivera DE, Pauley AM, Leonard KS, Hohman EE. Adaptive, behavioral intervention impact on weight gain, physical activity, energy intake, and motivational determinants: Results of a feasibility trial in pregnant women with overweight/obesity. J Behav Med. 2021;44(5):605-21. https://doi.org/10.1007/s10865-021-00227-9 PMid:33954853 DOI: https://doi.org/10.1007/s10865-021-00227-9

Graham ML, Strawderman MS, Demment M, Olson CM. Does usage of an ehealth intervention reduce the risk of excessive gestational weight gain? secondary analysis from a randomized controlled trial. J Med Internet Res. 2017;19(1):e6. https://doi.org/10.2196/jmir.6644 PMid:28069560 DOI: https://doi.org/10.2196/jmir.6644

Bowden CS, Greenberg VR. Children and their Families: The Continuum of Care. 2nd ed. Philadelphia, PA: Lippincot Williams and Wilkins; 2010.

Willcox JC, Wilkinson SA, Lappas M, Ball K, Crawford D, McCarthy EA, et al. A mobile health intervention promoting healthy gestational weight gain for women entering pregnancy at a high body mass index: The txt4two pilot randomised controlled trial. BJOG. 2017;124(11):1718-28. https://doi.org/10.1111/1471-0528.14552 PMid:28220604 DOI: https://doi.org/10.1111/1471-0528.14552

Kojima N, Krupp K, Ravi K, Gowda S, Jaykrishna P, Leonardson-Placek C, et al. Implementing and sustaining a mobile medical clinic for prenatal care and sexually transmitted infection prevention in rural Mysore, India. BMC Infect Dis. 2017;17(1):189. https://doi.org/10.1186/s12879-017-2282-3 PMid:28264668 DOI: https://doi.org/10.1186/s12879-017-2282-3

Kennelly MA, Ainscough K, Lindsay K, Gibney E, Mc Carthy M, McAuliffe FM. Pregnancy, exercise and nutrition research study with smart phone app support (Pears): Study protocol of a randomized controlled trial. Contemp Clin Trials. 2016;46:92-9. https://doi.org/10.1016/j.cct.2015.11.018 PMid:26625980 DOI: https://doi.org/10.1016/j.cct.2015.11.018

Simmons LA, Phipps JE, Overstreet C, Smith PM, Bechard E, Liu S, et al. Goals for reaching optimal wellness (GROWell): A clinical trial protocol of a digital dietary intervention for pregnant and postpartum people with prenatal overweight or obesity. Contemp Clin Trials. 2022;113:106627. https://doi.org/10.1016/j.cct.2021.106627 PMid:34813963 DOI: https://doi.org/10.1016/j.cct.2021.106627

Wu LL, Potenza MN, Zhou N, Kober H, Shi XH, Yip SW, et al. Efficacy of single-session transcranial direct current stimulation on addiction-related inhibitory control and craving: A randomized trial in males with internet gaming disorder. J Psychiatry Neurosci. 2021;46(1):E111-8. https://doi.org/10.1503/JPN.190137 PMid:33119491 DOI: https://doi.org/10.1503/jpn.190137

Harrison TN, Sacks DA, Parry C, Macias M, Grant DS, Lawrence JM. Acceptability of virtual prenatal visits for women with gestational diabetes. Womens Health Issues. 2017;27(3):351-5. https://doi.org/10.1016/j.whi.2016.12.009 PMid:28153743 DOI: https://doi.org/10.1016/j.whi.2016.12.009

Mathew KV, Walarine MT. Neck pain among smartphone users: An imminent public health issue during the pandemic time. J Ideas Health. 2020;3(1):201-4. https://doi.org/10.47108/jidhealth.vol3.issspecial1.65 DOI: https://doi.org/10.47108/jidhealth.Vol3.IssSpecial1.65

Yang P, Lo W, He ZL, Xiao XM. Medical nutrition treatment of women with gestational diabetes mellitus by a telemedicine system based on smartphones. J Obstetr Gynaecol Res. 2018;44(7):1228-34. https://doi.org/10.1111/jog.13669 PMid:29797375 DOI: https://doi.org/10.1111/jog.13669

Nakagawa K, Umazume T, Mayama M, Chiba K, Saito Y, Kawaguchi S, et al. Feasibility and safety of urgently initiated maternal telemedicine in response to the spread of COVID-19: A 1-month report. J Obstet Gynaecol Res. 2020;46(10):1967-71. https://doi.org/10.1111/jog.14378 PMid:32691488 DOI: https://doi.org/10.1111/jog.14378

Skar JB, Garnweidner-Holme LM, Lukasse M, Terragni L. “Women’ s experiences with using a smartphone app (the Pregnant + app) to manage gestational diabetes mellitus in a randomised controlled trial. Midwifery. 2018;58:102-8. https://doi.org/10.1016/j.midw.2017.12.021 PMid:29329023 DOI: https://doi.org/10.1016/j.midw.2017.12.021

Ngo E, Truong MB, Wright D, Nordeng H. Impact of a mobile application for tracking nausea and vomiting during pregnancy (NV) on NVP symptoms, quality of life, and decisional conflict regarding NVP treatments : Minsafestart randomized controlled trial. MIR Mhealth Uhealth. 2022;10(7):e36226. https://doi.org/10.2196/36226 DOI: https://doi.org/10.2196/36226

Garnweidner-Holme L, Henriksen L, Torheim LE, Lukasse M. Effect of the pregnant+ smartphone app on the dietary behavior of women with gestational diabetes mellitus: Secondary analysis of a randomized controlled trial. JMIR Mhealth Uhealth. 2020;8(11):e18614. https://doi.org/10.2196/18614 PMid:33146620 DOI: https://doi.org/10.2196/18614

Gonzalez-Plaza E, Bellart J, Arranz Á, Luján-Barroso L, Mirasol EC, Seguranyes G. Effectiveness of a step counter smartband and midwife counseling intervention on gestational weight gain and physical activity in pregnant women with obesity (pas and pes study): Randomized controlled trial. JMIR Mhealth Uhealth. 2022;10(2):e28886. https://doi.org/10.2196/28886 PMid:35166684 DOI: https://doi.org/10.2196/28886

Ghasemi F, Vakilian K, Khalajinia Z. Comparing the effect of individual counseling with counseling on social application on self-care and quality of life of women with gestational diabetes. Prim Care Diabetes. 2021;15(5):842-7. https://doi.org/10.1016/j.pcd.2021.05.009 PMid:34215552 DOI: https://doi.org/10.1016/j.pcd.2021.05.009

Tian Y, Zhang S, Huang F, Shi F, Li Y, Chen X, et al. Glycemic qualification rate and frequency of self-monitoring blood glucose glycemic qualification rate and frequency of self-monitoring blood glucose (SMBG) in women with gestational diabetes mellitus (GDM). Diabetes Res Clin Pract. 2020;170:108482. https://doi.org/10.1016/j.diabres.2020.108482 PMid:32998018 DOI: https://doi.org/10.1016/j.diabres.2020.108482

Al Hashmi I, Alsabti H, Al Omari O, Al Nasseri Y, Khalaf A. Development, feasibility and acceptability of a self-efficacy- enhancing smartphone application among pregnant women with gestational diabetes mellitus: Single-arm pilot clinical trial. BMC Pregnancy Childbirth. 2022:22(1):358. https://doi.org/10.1186/s12884-022-04684-1 PMid:35461221. DOI: https://doi.org/10.1186/s12884-022-04684-1

Musabyimana A, Ruton H, Gaju E, Berhe A, Grépin KA, Ngenzi J, et al. Assessing the perspectives of users and beneficiaries of a community health worker mHealth tracking system for mothers and children in Rwanda. PLoS One. 2018;13(6):e0198725. https://doi.org/10.1371/journal.pone.0198725 PMid:29879186 DOI: https://doi.org/10.1371/journal.pone.0198725

Kingston D, Austin MP, van Zanten SV, Harvalik P, Giallo R, McDonald SD, et al. Pregnant women’s views on the feasibility and acceptability of web-based mental health e-screening versus paper-based screening: A randomized controlled trial. J Med Internet Res. 2017;19(4):e88. https://doi.org/10.2196/jmir.6866 PMid:28389421 DOI: https://doi.org/10.2196/jmir.6866

Hantsoo L, Podcasy J, Sammel M, Epperson CN, Kim DR. Pregnancy and the acceptability of computer-based versus traditional mental health treatments. J Womens Health (Larchmt). 2017;26(10):1106-13. https://doi.org/10.1089/ jwh.2016.6255 PMid:28426287 DOI: https://doi.org/10.1089/jwh.2016.6255

Felder JN, Epel ES, Neuhaus J, Krystal AD, Prather AA. Efficacy of digital cognitive behavioral therapy for the treatment of insomnia symptoms among pregnant women a randomized clinical trial. JAMA Psychiatry. 2020;77(5):484-492. https://doi.org/10.1001/jamapsychiatry.2019.4491 PMid:31968068 DOI: https://doi.org/10.1001/jamapsychiatry.2019.4491

Wernimont SA, Sheng JS, Fleener D, Summers KM, Syrop C, Andrews JI. Cellular-enabled glucometers and maternal glucose control: A quality improvement initiative. J Diabetes Sci Technol. 2020;14(1):77-82. https://doi.org/10.1177/1932296819856360 PMid:31216873 DOI: https://doi.org/10.1177/1932296819856360

Musyoka FM, Thiga MM, Muketha GM. A 24-hour ambulatory blood pressure monitoring system for preeclampsia management in antenatal care. Inform Med Unlocked. 2019;16:100199. https://doi.org/10.1016/j.imu.2019.100199 DOI: https://doi.org/10.1016/j.imu.2019.100199

Parameswaran UD, Pentecost R, Williams M, Smid M, Latendresse G. Experiences with use of technology and telehealth among women with perinatal depression. BMC Pregnancy Childbirth. 2022;22(1):571. https://doi.org/10.1186/s12884-022-04889-4 PMid:35850663 DOI: https://doi.org/10.1186/s12884-022-04889-4

Latendresse G, Bailey E, Iacob E, Murphy H, Pentecost R, Thompson N, et al. A group videoconference intervention for reducing perinatal depressive symptoms: A telehealth pilot study. J Midwifery Womens Health. 2021;66(1):70-7. https://doi.org/10.1111/jmwh.13209 PMid:33576146 DOI: https://doi.org/10.1111/jmwh.13209

Bircher C, Wilkes M, Zahradka N, Wells E, Prosser- Snelling E. Remote care and triage of obstetric patients with COVID-19 in the community: Operational considerations. BMC Pregnancy Childbirth. 2022;22(1):550. https://doi.org/10.1186/s12884-022-04863-0 PMid:35804304 DOI: https://doi.org/10.1186/s12884-022-04863-0

Forsell E, Bendix M, Holländare F, von Schultz BV, Nasiell J, Blomdahl-Wetterholm M. Internet delivered cognitive behavior therapy for antenatal depression: A randomised controlled trial. J Affect Disord. 2017;221:56-64. https://doi.org/10.1016/j.jad.2017.06.013 PMid:28628768 DOI: https://doi.org/10.1016/j.jad.2017.06.013

Williamson GR, O’Connor A, Chamberlain C, Halpin D. mHealth resources for asthma and pregnancy care: Methodological issues and social media recruitment. A discussion paper. J Adv Nurs. 2018;74(10):2442-9. https://doi.org/10.1111/jan.13773 PMid:29943472 DOI: https://doi.org/10.1111/jan.13773

Alam M, Banwell C, Lokuge K. The effect of women’s differential access to messages on their adoption of mobile health services and pregnancy behavior in Bangladesh: Retrospective cross- sectional study. JMIR Mhealth Uhealth. 2020;8(7):e17665. https://doi.org/10.2196/17665 PMid:32706694 DOI: https://doi.org/10.2196/17665

Jennifer FN, Segal Z, Beckj A, Sherwood CN, Sherry GH. An open trial of web-based mindfulness-based cognitive therapy for perinatal women at risk for depressive relapse. Cogn Behav Pract. 2017;24(1):26-37. https://doi.org/10.1016/j.cbpra.2016.02.002 DOI: https://doi.org/10.1016/j.cbpra.2016.02.002

Olson CM, Groth SW, Graham ML, Reschke JE, Strawderman MS, Fernandez ID. The effectiveness of an online intervention in preventing excessive gestational weight gain: The e-moms roc randomized controlled trial. BMC Pregnancy Childbirth. 2018;18(1):148. https://doi.org/10.1186/s12884-018-1767-4 PMid:29743026 DOI: https://doi.org/10.1186/s12884-018-1767-4

Guo H, Zhang Y, Li P, Zhou P, Chen LM, Li SY. Evaluating the effects of mobile health intervention on weight management, glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus. J Endocrinol Invest. 2019;42(6)709-14. https://doi.org/10.1007/s40618-018-0975-0 PMid:30406378 DOI: https://doi.org/10.1007/s40618-018-0975-0

Sarre G, Year S, Docto O. Patients’ experience of antenatal diabetic care during the current COVID-19 pandemic: An exploratory study. Pract Diabetes. 2021;38(6):23-30. https://doi.org/10.1002/pdi.2367 DOI: https://doi.org/10.1002/pdi.2367

Lanssens D, Vonck S, Storms V, Thijs IM, Grieten L, Gyselaers W. The impact of a remote monitoring program on the prenatal follow-up of women with gestational hypertensive disorders. Eur J Obstetr Gynecol Reprod Biol. 2018;223:72-8. https://doi.org/10.1016/j.ejogrb.2018.02.015 PMid:29500948 DOI: https://doi.org/10.1016/j.ejogrb.2018.02.015

Downloads

Published

2023-03-09

How to Cite

1.
Latifah E, Siregar K, Delmaifanis D. The Role of Digital Health in the Early Detection and Management of Obstetric Complications in the Community: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2023 Mar. 9 [cited 2024 Nov. 21];11(F):143-55. Available from: https://oamjms.eu/index.php/mjms/article/view/11391

Issue

Section

Systematic Review Article

Categories

Funding data

Similar Articles

You may also start an advanced similarity search for this article.