A Review of CRISPR Cas9 for SCA: Treatment Strategies and Could Target β-globin Gene and BCL11A Gene using CRISPR Cas9 Prevent the Patient from Sickle Cell Anemia?

Authors

  • Bambang Edi Suwito Department Anatomy and Histology, Faculty of Medicine, Nadhlatul Ulama Surabaya University, Surabaya, Indonesia
  • Arga Setyo Adji Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia https://orcid.org/0000-0002-0188-0500
  • Jordan Steven Widjaja Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
  • Syalomitha Claudia Stefanie Angel Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
  • Aufar Zimamuz Zaman Al Hajiri Faculty of Medicine, Nadhlatul Ulama Surabaya University, Surabaya, Indonesia https://orcid.org/0000-0003-2302-1640
  • Nanda Fadhila Witris Salamy Department Physiology, Faculty of Medicine, Nahdlatul Ulama Surabaya University, Surabaya, Indonesia
  • Choirotussanijjah Choirotussanijjah Department Anatomy and Histology, Faculty of Medicine, Nadhlatul Ulama Surabaya University, Surabaya, Indonesia; Department Biochemistry, Faculty of Medicine, Nahdlatul Ulama Surabaya University, Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.11435

Keywords:

Sickle cell disease thalassemia, Hemoglobin subunit beta gene, BCL11A, Clustered regular interspersed short palindromic repeats-CRISPR-related

Abstract

BACKGROUND: Sickle cell anemia is a hereditary globin chain condition that leads to hemolysis and persistent organ damage. Chronic hemolytic anemia, severe acute and chronic pain, and end-organ destruction occur throughout the lifespan of sickle cell anemia. SCD is associated with a higher risk of mortality. Genome editing with CRISPR-associated regularly interspersed short palindromic repeats (CRISPR/Cas9) have therapeutic potential for sickle cell anemia thala.

AIM: This research aimed to see if using CRISPR/Cas9 to target β-globin gene is an effective therapeutic and if it has a long-term effect on Sickle Cell Anemia.

METHODS: The method used in this study summarizes the article by looking for keywords that have been determined in the title and abstract. The authors used official guidelines from Science Direct, PubMed, Google Scholar, and Journal Molecular Biology to select full-text articles published within the last decade, prioritizing searches within the past 10 years.

RESULTS: CRISPR/Cas9-mediated genome editing in clinical trials contributes to α-globin gene deletion correcting β-thalassemia through balanced α- and β-globin ratios and inhibiting disease progression.

CONCLUSION: HBB and BCL11A targeting by CRISPR/Cas9 deletion effectively inactivate BCL11A, a repressor of fetal hemoglobin production. However, further research is needed to determine its side effects and safety.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Saraf SL, Molokie RE, Nouraie M, Sable CA, Luchtman-Jones L, Ensing GJ, et al. Differences in the clinical and genotypic presentation of sickle cell disease around the world. Paediatr Respir Rev. 2014;15(1):4-12. https://doi.org/10.1016/j.prrv.2013.11.003 PMid:24361300 DOI: https://doi.org/10.1016/j.prrv.2013.11.003

Bauer DE, Orkin SH. Hemoglobin switching’s surprise: The versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015;33:62-70. https://doi.org/10.1016/j.gde.2015.08.001 PMid:26375765 DOI: https://doi.org/10.1016/j.gde.2015.08.001

Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561-73. https://doi.org/10.1056/NEJMra1510865 PMid:28423290 DOI: https://doi.org/10.1056/NEJMra1510865

Shah FT, Sayani F, Trompeter S, Drasar E, Piga A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019;37:100588. https://doi.org/10.1016/j.blre.2019.100588 PMid:31324412 DOI: https://doi.org/10.1016/j.blre.2019.100588

CaoA, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61-76. https://doi.org/10.1097/GIM.0b013e3181cd68ed PMid:20098328 DOI: https://doi.org/10.1097/GIM.0b013e3181cd68ed

Pasricha SR, Drakesmith H. Hemoglobinopathies in the fetal position. N Engl J Med. 2018;379(17):1675-7. https://doi.org/10.1056/NEJMcibr1809628 PMid:30354961 DOI: https://doi.org/10.1056/NEJMcibr1809628

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252-60. https://doi.org/10.1056/nejmoa2031054 PMid:33283989 DOI: https://doi.org/10.1056/NEJMoa2031054

Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, et al. The European hematology association roadmap for european hematology research: A consensus document. Haematologica. 2016;101(2):115-208. https://doi.org/10.3324/haematol.2015.136739 PMid:26819058 DOI: https://doi.org/10.3324/haematol.2015.136739

Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984;74(2):652-6. https://doi.org/10.1172/ JCI111464 PMid:6205021 DOI: https://doi.org/10.1172/JCI111464

Cappellini MD, Viprakasit V, Taher AT, Georgiev P, Kuo KH, Coates T, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219-31. https://doi.org/10.1056/NEJMoa1910182 PMid:32212518 DOI: https://doi.org/10.1056/NEJMoa1910182

Ataga KI, Kutlar BS, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429-39. https://doi.org/10.1056/NEJMoa1611770 DOI: https://doi.org/10.1056/NEJMoa1611770

Baronciani D, Angelucci E, Potschger U, Gaziev J, Yesilipek A, Zecca M, et al. Hemopoietic stem cell transplantation in thalassemia: A report from the European society for blood and bone marrow transplantation hemoglobinopathy registry, 2000-2010. Bone Marrow Transplant. 2016;51(4):536-41. https://doi.org/10.1038/bmt.2015.293 PMid:26752139 DOI: https://doi.org/10.1038/bmt.2015.293

Eapen M, Brazauskas R, Walters MC, Bernaudin F, Bo-Subait K, Fitzhugh CD, et al. Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: A retrospective multicentre, cohort study. Lancet Haematol. 2019;6(11):e585-96. https://doi.org/10.1016/S2352-3026(19)30154-1 PMid:31495699 DOI: https://doi.org/10.1016/S2352-3026(19)30154-1

Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, et al. Sickle cell disease: An international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017;129(11):1548-56. https://doi.org/10.1182/blood-2016-10-745711 PMid:27965196 DOI: https://doi.org/10.1182/blood-2016-10-745711

Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205-15. https://doi.org/10.1056/NEJMoa2029392 PMid:33283990 DOI: https://doi.org/10.1056/NEJMoa2029392

Thompson AA, Walters MC, Kwiatkowski J, Rasko JE, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion- dependent β-thalassemia. N Engl J Med. 2018;378(16):1479-93. https://doi.org/10.1056/NEJMoa1705342 PMid:29669226 DOI: https://doi.org/10.1056/NEJMoa1705342

Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848-55. https://doi.org/10.1056/NEJMoa1609677 DOI: https://doi.org/10.1056/NEJMoa1609677

Brendel C, Guda S, Renella R, Bauer DE, Canver MC, Kim YJ, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest. 2016;126(10):3868-78. https://doi.org/10.1172/JCI87885 PMid:27599293 DOI: https://doi.org/10.1172/JCI87885

Brendel C, Negre O, Rothe M, Guda S, Parsons G, Harris C, et al. Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for Sickle cell gene therapy. Mol Ther Methods Clin Dev. 2020;17:589-600. https://doi.org/10.1016/j.omtm.2020.03.015 PMid:32300607 DOI: https://doi.org/10.1016/j.omtm.2020.03.015

Musallam KM, Sankaran VG, Cappellini MD, Duca L, Nathan DG, Taher AT. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood. 2012;119(2):364-7. https://doi.org/10.1182/blood-2011-09-382408 PMid:22096240 DOI: https://doi.org/10.1182/blood-2011-09-382408

Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639-44. https://doi.org/10.1056/NEJM199406093302303 PMid:7993409 DOI: https://doi.org/10.1056/NEJM199406093302303

Powars DR, Weiss JN, Chan LS, Schroeder WA. Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 1984;63(4):921-6. DOI: https://doi.org/10.1182/blood.V63.4.921.bloodjournal634921

Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med. 2013;3(1):a011643. https://doi.org/10.1101/cshperspect.a011643 PMid:23209159 DOI: https://doi.org/10.1101/cshperspect.a011643

Canver MC, Orkin SH. Customizing the genome as therapy for the β-hemoglobinopathies. Blood. 2016;127(21):2536-45. https://doi.org/10.1182/blood-2016-01-678128 PMid:27053533 DOI: https://doi.org/10.1182/blood-2016-01-678128

Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood. 2020;136(21):2392-400. https://doi.org/10.1182/blood.2020007645 PMid:32808012 DOI: https://doi.org/10.1182/blood.2020007645

Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253-7. https://doi.org/10.1126/science.1242088 PMid:24115442 DOI: https://doi.org/10.1126/science.1242088

Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105(5):1620-5. https://doi.org/10.1073/pnas.0711566105 PMid:18245381 DOI: https://doi.org/10.1073/pnas.0711566105

Bak RO, Dever DP, Porteus MH. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc. 2018;13(2):358-76. https://doi.org/10.1038/nprot.2017.143 PMid:29370156 DOI: https://doi.org/10.1038/nprot.2017.143

Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically modified gRNAs enhance CRISPR/Cas editing in human cells. Nat Biotechnol. 2015;33(9):985-9. https://doi.org/10.1038/nbt.3290 PMid:26121415 DOI: https://doi.org/10.1038/nbt.3290

Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192-7. https://doi.org/10.1038/nature15521 PMid:26375006 DOI: https://doi.org/10.1038/nature15521

Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med. 2019;25(5):776-83. https://doi.org/10.1038/s41591-019-0401-y PMid:30911135 DOI: https://doi.org/10.1038/s41591-019-0401-y

Demirci S, Leonard A, Haro-Mora JJ, Uchida N, Tisdale JF. CRISPR/Cas9 for sickle cell disease: Applications, future possibilities, and challenges. Adv Exp Med Biol. 2019;1144:37-52. https://doi.org/10.1007/5584_2018_331 PMid:30715679 DOI: https://doi.org/10.1007/5584_2018_331

Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet. 2016;135(9):1011-28. https://doi.org/10.1007/s00439-016-1688-0 PMid:27250347 DOI: https://doi.org/10.1007/s00439-016-1688-0

Meier ER. Treatment options for sickle cell disease. Pediatr Clin North Am. 2018;65(3):427-43. https://doi.org/10.1016/j.pcl.2018.01.005 PMid:29803275 DOI: https://doi.org/10.1016/j.pcl.2018.01.005

Wang X, Thein SL. Switching from fetal to adult hemoglobin. Nat Genet. 2018;50(4):478-80. https://doi.org/10.1038/s41588-018-0094-z PMid:29610477 DOI: https://doi.org/10.1038/s41588-018-0094-z

Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, et al. Highly efficient editing of the β-globin gene in patient- derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019;47(15):7955-72. https://doi.org/10.1093/nar/gkz475 PMid:31147717 DOI: https://doi.org/10.1093/nar/gkz475

Kapoor S, Little JA, Pecker LH. Advances in the treatment of sickle cell disease. Mayo Clin Proc. 2018;93(12):1810-24. https://doi.org/10.1016/j.mayocp.2018.08.001 PMid:30414734 DOI: https://doi.org/10.1016/j.mayocp.2018.08.001

Kavanagh PL, Fasipe TA, Wun T. Sickle cell disease: A review. JAMA. 2022;328(1):57-68. https://doi.org/10.1001/jama.2022.10233 PMid:35788790 DOI: https://doi.org/10.1001/jama.2022.10233

Onimoe G, Rotz S. Sickle cell disease: A primary care update. Cleve Clin J Med. 2020;87(1):19-27. https://doi.org/10.3949/ccjm.87a.18051 PMid:31990651 DOI: https://doi.org/10.3949/ccjm.87a.18051

Chou ST, Fasano RM. Management of patients with sickle cell disease using transfusion therapy: Guidelines and complications. Hematol Oncol Clin North Am. 2016;30(3):591-608. https://doi.org/10.1016/j.hoc.2016.01.011 PMid:27112998 DOI: https://doi.org/10.1016/j.hoc.2016.01.011

Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene. Hum Gene Ther. 2016;27(2):148-65. https://doi.org/10.1089/hum.2016.007 PMid:26886832 DOI: https://doi.org/10.1089/hum.2016.007

Dai WJ, Zhu LY, Yan ZY, Xu Y, Wang QL, Lu XJ. CRISPR-Cas9 for in vivo gene therapy: Promise and hurdles. Mol Ther Nucleic Acids. 2016;5(8):e349. https://doi.org/10.1038/mtna.2016.58 PMid:28131272 DOI: https://doi.org/10.1038/mtna.2016.58

Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331-8. https://doi.org/10.1038/nature10886 PMid:22337052 DOI: https://doi.org/10.1038/nature10886

Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci U S A. 2007;104(27):11346-51. https://doi.org/10.1073/pnas.0611393104 PMid:17592125 DOI: https://doi.org/10.1073/pnas.0611393104

Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197-9. https://doi.org/10.1038/ng2108 PMid:17767159 DOI: https://doi.org/10.1038/ng2108

Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M, Sanna S, et al. DNA polymorphisms at the BCL11A, HBS1L- MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008;105(33):11869-74. http://doi.org/10.1073/pnas.0804799105 PMid:18667698 DOI: https://doi.org/10.1073/pnas.0804799105

Galarneau G, Palmer CD, Sankaran VG, Orkin SH, Hirschhorn JN, Lettre G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet. 2010;42(12):1049-51. https://doi.org/10.1038/ng.707 PMid:21057501 DOI: https://doi.org/10.1038/ng.707

Borg J, Papadopoulos P, Georgitsi M, Gutiérrez L, Grech G, Fanis P, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801-5. https://doi.org/10.1038/ng.630 PMid:20676099 49. Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and γ-to β-globin gene switching. Nat Genet. 2010;42(9):742-4. https://doi.org/10.1038/ng.637 DOI: https://doi.org/10.1038/ng.637

Wilber A, Hargrove PW, Kim YS, Riberdy JM, Sankaran VG, Papanikolaou E, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood. 2011;117(10):2817-26. https://doi.org/10.1182/blood-2010-08-300723 PMid:21156846 DOI: https://doi.org/10.1182/blood-2010-08-300723

Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839-42. https://doi.org/10.1126/science.1165409 PMid:19056937 DOI: https://doi.org/10.1126/science.1165409

Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A. 2010;107(28):12617-22. https://doi.org/10.1073/pnas.1006774107 PMid:20616024 DOI: https://doi.org/10.1073/pnas.1006774107

Xu J, Sankaran VG, Ni M, Menne TF, Puram RV, Kim W, et al. Transcriptional silencing of γ-globin by BCL11A involves long- range interactions and cooperation with SOX6. Genes Dev. 2010;24(8):783-98. https://doi.org/10.1101/gad.1897310 PMid:20395365 DOI: https://doi.org/10.1101/gad.1897310

Magor GW, Tallack MR, Gillinder KR, Bell CC, McCallum N, Williams B, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood. 2015;125(15):2405-17. https://doi.org/10.1182/blood-2014-08-590968 PMid:25724378 DOI: https://doi.org/10.1182/blood-2014-08-590968

Taghavifar F, Hamid M, Shariati G. Gene expression in blood from an individual with β-thalassemia: An RNA sequence analysis. Mol Genet Genomic Med. 2019;7(7):e00740. https://doi.org/10.1002/mgg3.740 PMid:31134759 DOI: https://doi.org/10.1002/mgg3.740

Gallagher PG, Liem RI, Wong E, Weiss MJ, Bodine DM. GATA-1 and Oct-1 are required for expression of the human α-hemoglobin- stabilizing protein gene. J Biol Chem. 2005;280(47):39016-23. https://doi.org/10.1074/jbc.M506062200 PMid:16186125 DOI: https://doi.org/10.1074/jbc.M506062200

Kihm AJ, Kong Y, Hong W, Russell JE, Rouda S, Adachi K, et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature. 2002;417(6890):75-63. https://doi.org/10.1038/ nature00803 PMid:12066189 DOI: https://doi.org/10.1038/nature00803

Zhou G, Zhang H, Lin A, Wu Z, Li T, Zhang X, et al. Multi-omics analysis in β-thalassemia using an HBB gene-knockout human erythroid progenitor cell model. Int J Mol Sci. 2022;23(5):10.3390/ ijms23052807. https://doi.org/10.3390/ijms23052807 PMid:35269949 DOI: https://doi.org/10.3390/ijms23052807

Adji AS, Widjaja JS, Wardani VA, Muhammad AH, Handajani F, Putra HB, et al. A review of CRISPR Cas9 for Alzheimer’s disease: Treatment strategies and could target APOE e4, APP, and PSEN-1 gene using CRISPR cas9 prevent the patient from Alzheimer’s disease? Open Access Maced J Med Sci. 2022;10(F):745-57. https://doi.org/10.3889/oamjms.2022.9053 DOI: https://doi.org/10.3889/oamjms.2022.9053

Suwito BE, Adji AS, Wardani VA, Widjaja JS, Angel SC, Rahman FS. A review of CRISPR Cas9 for ASCVD: Treatment strategies and could target PSCK9 gene using CRISPR cas9 prevent the patient from atherosclerotic vascular disease? Bali Med J. 2022;11(2)985-93. https://doi.org/10.15562/bmj. v11i2.3414 DOI: https://doi.org/10.15562/bmj.v11i2.3414

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/ science.1225829 PMid:22745249 DOI: https://doi.org/10.1126/science.1225829

Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227-64. https://doi.org/10.1146/annurev-biochem-060815-014607 PMid:27145843 DOI: https://doi.org/10.1146/annurev-biochem-060815-014607

Chadwick AC, Musunuru K. Treatment of dyslipidemia using CRISPR/Cas9 genome editing. Curr Atheroscler Rep. 2017;19(7):1-10. https://doi.org/10.1007/s11883-017-0668-8 PMid:28550381 DOI: https://doi.org/10.1007/s11883-017-0668-8

Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: Advances and therapeutic opportunities. Nat Rev Drug Discov. 2020;19(12):839-59. https://doi.org/10.1038/s41573-020-0084-6 PMid:33077937 DOI: https://doi.org/10.1038/s41573-020-0084-6

Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593(7859):429-34. https://doi.org/10.1038/s41586-021-03534-y PMid:34012082 DOI: https://doi.org/10.1038/s41586-021-03534-y

Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, et al. A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med. 2018;7(1):87-97. https://doi.org/10.1002/sctm.17-0066 PMid:29164808 DOI: https://doi.org/10.1002/sctm.17-0066

Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient ipscs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470-9. https://doi.org/10.1002/stem.1969 PMid:25702619 DOI: https://doi.org/10.1002/stem.1969

Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731-4. https://doi.org/10.1038/nbt.1927 PMid:21738127 DOI: https://doi.org/10.1038/nbt.1927

Khosravi MA, Abbasalipour M, Concordet JP, Berg JV, Zeinali S, Arashkia A, et al. Targeted deletion of BCL11A gene by CRISPR- Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol. 2019;854:398-405. https://doi.org/10.1016/j.ejphar.2019.04.042 PMid:31039344 DOI: https://doi.org/10.1016/j.ejphar.2019.04.042

Amjad F, Fatima T, Fayyaz T, Khan MA, Qadeer MI. Novel genetic therapeutic approaches for modulating the severity of β-thalassemia (Review). Biomed Rep. 2020;13(5):48. https://doi.org/10.3892/br.2020.1355 PMid:32953110 DOI: https://doi.org/10.3892/br.2020.1355

Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apher Sci. 2021;60(1):103060. https://doi.org/10.1016/j.transci.2021.103060 PMid:33455878 DOI: https://doi.org/10.1016/j.transci.2021.103060

Zakaria NA, Bahar R, Abdullah WZ, Mohamed Yusoff AA, Shamsuddin S, Abdul Wahab R, et al. Genetic manipulation strategies for β-thalassemia: A review. Front Pediatr. 2022;10:901605. https://doi.org/10.3389/fped.2022.901605 PMid:35783328 DOI: https://doi.org/10.3389/fped.2022.901605

Widjaja JS, Adji AS, Wardani VA, Santoso EL, Sunarto FR, Handajani F. DMD, RIPK3, and MLKL gene editing by CRISPR Cas9 as myofiber protection against dystrophin deficiency and necroptosis in Duchenne muscular dystrophy: A literature review. Int J Health Sci (Qassim). 2022;6(S6):2199-222. https://doi.org/10.53730/ijhs.v6ns6.10886 DOI: https://doi.org/10.53730/ijhs.v6nS6.10886

Baraja A, Sunarto FR, Adji AS, Handajani F, Rahman FS. Deletion of the RNLS gene using CRISPR/Cas9 as pancreatic cell β protection against autoimmune and ER stress for Type 1 diabetes mellitus. Open Access Maced J Med Sci. 2021;9(F):613-9. https://doi.org/10.3889/oamjms.2021.7658 DOI: https://doi.org/10.3889/oamjms.2021.7658

Downloads

Published

2023-02-03

How to Cite

1.
Suwito BE, Adji AS, Widjaja JS, Angel SCS, Al Hajiri AZZ, Salamy NFW, Choirotussanijjah C. A Review of CRISPR Cas9 for SCA: Treatment Strategies and Could Target β-globin Gene and BCL11A Gene using CRISPR Cas9 Prevent the Patient from Sickle Cell Anemia?. Open Access Maced J Med Sci [Internet]. 2023 Feb. 3 [cited 2024 Apr. 24];11(F):95-106. Available from: https://oamjms.eu/index.php/mjms/article/view/11435

Issue

Section

Narrative Review Article

Categories