The Risk Factor Analysis of Femorotibial Joint Morphometrics Associated with Severity of Anterior Cruciate Ligament Tear Using MRI Examination: Study in Indonesia
DOI:
https://doi.org/10.3889/oamjms.2023.11473Keywords:
Femorotibial joint morphometrics, ACL tear grades, Magnetic Resonance ImagingAbstract
BACKGROUND: Anterior cruciate ligament (ACL) tear is a condition that has been linked to both short-term and long-term clinical outcomes and has an anatomical risk factor known as femorotibial joint morphometrics. There are three grades of this condition, which are sometimes difficult to detect through imaging.
AIM: This study aimed to analyze the prevalent ratio (PR) of femorotibial joint morphometrics to ACL tear grades using magnetic resonance imaging (MRI).
METHODS: An observational approach along with a cross-sectional design was employed. The ACL tear grade and measurement of bi-intercondylar width (BCW), North width (NW), NW index (NWI), tibial plateau slope (TPS), tibial plateau depth (TPD), tibial eminence width (EW), and tibial EW index (EWI) were retrospectively evaluated in 48 patients using knee MRI with new non-contact ACL tear aged above 18 years. The Chi-square test was the statistical analysis used to measure PR.
RESULTS: The number of subjects presented with ACL tear grade I-II and III was 16 and 32, respectively. The PR value of lateral TPS to ACL tear grades and the lowest 95% confidence interval (CI) were both greater than one, and hence, significant. However, the PR values of BCW, NW, NWI, and medial TPS to ACL tear grades were greater than one, but the lowest 95% CI was less than one, and hence, not significant. Finally, the PR values of TPD, EW, and EWI could not be determined in this study.
CONCLUSION: The lateral TPS had a PR value greater than one, indicating that it is considered a risk factor for ACL tear grade III.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Berquist TH. MRI of the Musculoskeletal System. 6th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2013.
Guenoun D, Le Corroller T, Amous Z, Pauly V, Sbihi A, Champsaur P. The contribution of MRI to the diagnosis of traumatic tears of the anterior cruciate ligament. Diagn Interv Imaging. 2012;93(5):331-41. https://doi.org/10.1016/j.diii.2012.02.003 PMid:22542209 DOI: https://doi.org/10.1016/j.diii.2012.02.003
Niitsu M. Anatomy of the knee and anterior cruciate ligament (ACL). In: Niitsu M, editor. Magnetic Resonance Imaging of the Knee. Heidelberg: Springer; 2013. p. 1-52. DOI: https://doi.org/10.1007/978-3-642-17893-1_3
Mckinnis L. Radiologic Evaluation of the Knee. In: Biblis M, editor. Musculoskeletal Imaging. Philadephia, PA: Davis Company; 2014. p. 405-46.
Beynnon BD, Sturnick DR, Argentieri EC, Slauterbeck JR, Tourville TW, Shultz SJ, et al. A sex-stratified multivariate risk factor model for anterior cruciate ligament injury. J Athl Train. 2015;50(10):1094-6. https://doi.org/10.4085/1062-6050-50.10.05 PMid:26340614 DOI: https://doi.org/10.4085/1062-6050-50.10.05
Ghandour T, Abdelrahman A, Talaat AE, Ghandour A, Al Gazzar H. New combined method using MRI for the assessment of tibial plateau slope and depth as risk factors for anterior cruciate ligament injury in correlation with anterior cruciate ligament arthroscopic findings: Does it correlate? Egypt Orthop J. 2015;50(3):171. DOI: https://doi.org/10.4103/1110-1148.177928
Mahajan PS, Chandra P, Negi VC, Jayaram AP, Hussein SA. Smaller anterior cruciate ligament diameter is a predictor of subjects prone to ligament injuries: An ultrasound study. Biomed Res Int. 2015;2015:845689. https://doi.org/10.1155/2015/845689 PMid:25685812 DOI: https://doi.org/10.1155/2015/845689
Khodair S, Elsayed A, Ghieda U. Relationship of distal femoral morphometrics with anterior cruciate ligament injury using MRI. Tanta Med J. 2014;42(2):64. https://doi.org.10.4103/1110-1415.137806 DOI: https://doi.org/10.4103/1110-1415.137806
Shaw KA, Dunoski B, Mardis N, Pacicca D. Knee morphometric risk factors for acute anterior cruciate ligament injury in skeletally immature patients. J Child Orthop. 2015;9(2):161-8. https://doi.org/10.1007/s11832-015-0652-1 PMid:25821086 DOI: https://doi.org/10.1007/s11832-015-0652-1
Xiao WF, Yang T, Cui Y, Zeng C, Wu S, Wang YL, et al. Risk factors for noncontact anterior cruciate ligament injury: Analysis of parameters in proximal tibia using anteroposterior radiography. J Int Med Res. 2016;44(1):157-63. https://doi.org/10.1177/0300060515604082 PMid:26647071 DOI: https://doi.org/10.1177/0300060515604082
Yaqoob J, Alam MS, Khalid N. Diagnostic accuracy of magnetic resonance imaging in assessment of meniscal and ACL tear: Correlation with arthroscopy. Pak J Med Sci. 2015;31(2):263-8. https://doi.org/10.12669/pjms.312.6499 PMid:26101472 DOI: https://doi.org/10.12669/pjms.312.6499
Görmeli CA, Özdemir Z, Kahraman AS, Yildirim O, Görmeli G, Öztürk BY, et al. The effect of the intercondylar notch width index on anterior cruciate ligament injuries: A study on groups with unilateral and bilateral ACL injury. Acta Orthop Belg. 2015;81(2):240-4. PMid:26280962
Ashwini T, Jain A, Kumar AA. MRI correlation of anterior cruciate ligament injuries with femoral intercondylar notch, posterior tibial slopes and medial tibial plateau depth in the Indian population. Int J Anatomy Radiol Surg. 2018;7(3):RO01-6. https://doi.org/10.7860/IJARS/2018/36086:2397
van der List JP, Mintz DN, DiFelice GS. The location of anterior cruciate ligament tears: A prevalence study using magnetic resonance imaging. Orthop J Sports Med. 2017;5(6):2325967117709966. https://doi.org/10.1177/2325967117709966 PMid:28680889 DOI: https://doi.org/10.1177/2325967117709966
Ristić V, Maljanović MC, Pericin B, Harhaji V, Milankov M. The relationship between posterior tibial slope and anterior cruciate ligament injury. Med Pregl. 2014;67(7-8):216-21. https://doi.org/10.2298/mpns1408216r PMid:25151761 DOI: https://doi.org/10.2298/MPNS1408216R
Kızılgöz V, Sivrioğlu AK, Ulusoy GR, Aydın H, Karayol SS, Menderes U. Analysis of the risk factors for anterior cruciate ligament injury: An investigation of structural tendencies. Clin Imaging. 2018;50:20-30. https://doi.org/10.1016/j.clinimag.2017.12.004 PMid:29253746 DOI: https://doi.org/10.1016/j.clinimag.2017.12.004
Li Y, Chou K, Zhu W, Xiong J, Yu M. Enlarged tibial eminence may be a protective factor of anterior cruciate ligament. Med Hypotheses. 2020;144:110230. https://doi.org/10.1016/j.mehy.2020.110230 PMid:33254536 DOI: https://doi.org/10.1016/j.mehy.2020.110230
Zeng C, Shu-Guang G, Wei J, T-bao Y, Cheng L, Luo W, et al. The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: A meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):804-15. https://doi.org/10.1007/s00167-012-2166-4 PMid:22893267 DOI: https://doi.org/10.1007/s00167-012-2166-4
Fernndez-Jaén T, López-Alcorocho JM, Rodriguez-Iñigo E, Castelln F, Hernndez JC, Guillén-García P. The importance of the intercondylar notch in anterior cruciate ligament tears. Orthop J Sport Med. 2015;3(8):1-6. https://doi.org/10.1177/2325967115597882 PMid:26535388 DOI: https://doi.org/10.1177/2325967115597882
Trainers NA. The female ACL: Why is it more prone to injury? J Orthop. 2016;13(2):A1-4. https://doi.org/10.1016/S0972-978X(16)00023-4 PMid:27053841 DOI: https://doi.org/10.1016/S0972-978X(16)00023-4
Bouras T, Fennema P, Burke S, Bosman H. Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sport Traumatol Arthrosc. 2018;26(4):1252-7. https://doi.org/10.1007/s00167-017-4625-4 PMid:28646381 DOI: https://doi.org/10.1007/s00167-017-4625-4
Priono BH, Utoyo GA, Ismiarto YD. Relationship of ACL injury with posterior tibial slope, intercondylar notch width ratio, age, and sex. J Orthop Traumatol Surabaya. 2018;7(2):106-13. https://doi.org/10.20473/joints.v7i2.2018.106-113 DOI: https://doi.org/10.20473/joints.v7i2.2018.106-113
Mochizuki T, Tanifuji O, Koga Y, Sato T, Kobayashi K, Watanabe S, et al. Correlation between posterior tibial slope and sagittal alignment under weight-bearing conditions in osteoarthritic knees. PLoS One. 2018;13(9):e020248. https://doi.org/10.1371/journal.pone.0202488 PMid:30208059 DOI: https://doi.org/10.1371/journal.pone.0202488
Stijak L, Blagojevič Z, Kadija M, Stankovič G, Djulejič V, Milovanovič D, et al. The role share influence of the posterior tibial slope on rupture of the anterior cruciate ligament. Vojnosanit Pregl. 2012;69(10):864-8. https://doi.org/10.2298/vsp101230022s PMid:23155607 DOI: https://doi.org/10.2298/VSP101230022S
Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: A minimum 2-year follow-up study. Am J Sports Med. 2014;42(4):927-33. https://doi.org/10.1177/0363546514521770 PMid:24553814 DOI: https://doi.org/10.1177/0363546514521770
Haddad B, Konan S, Mannan K, Scott G. Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg. 2012;78(6):757-63. PMid:23409572
Wang H, Zhang Z, Qu Y, Shi Q, Ai S, Cheng CK. Correlation between ACL size and dimensions of bony structures in the knee joint. Ann Anat. 2022;241:151906. https://doi.org/10.1016/j.aanat.2022.151906 PMid:35131449 DOI: https://doi.org/10.1016/j.aanat.2022.151906
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Dwi Windi Juniarti, Hermina Sukmaningtyas, Robin Novriansyah (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0