Proliferative Activity of Myoepithelial Cells in Normal and Diabetic Parotid Glands Based on Double Immunostaining Labeling
DOI:
https://doi.org/10.3889/oamjms.2023.11503Keywords:
Parotid gland, diabetes, myoepithelial cells, actin, PCNAAbstract
AIM: This study aimed to examine the effect of diabetes mellitus on the histology of parotid glands and to give a scientific overview of the distribution and the proliferative activity of myoepithelial cells (MECs) encircling both ducts and acini in parotid gland of both normal and diabetic mongrel dogs.
MATERIALS AND METHODS: Twelve male mongrel dogs were used in the experiment and divided into two equal groups, group I, control group, group II, dogs with alloxan-induced diabetes. The dogs of the group II were injected by fresh preparation of a single dose of 100 mg/kg body weight of alloxan monohydrate dissolved in physiological saline. Ten days later, blood glucose level was determined using enzymatic colorimetric test; dogs presented a glucose level at or above 200 mg/dL were included in the diabetic group of the experiment. Three months later, dogs were sacrificed and the parotid glands from all groups were dissected and prepared for histological examination and double immunohistochemical expression of both actin and proliferating cell nuclear antigen (PCNA).
RESULTS: Histological findings using H and E staining confirmed that the parotid gland parenchyma of the diabetic group had glandular atrophy characterized by loss of normal gland structure, acinar degeneration, and dilatation of the duct system with the presence of duct like structure. Moreover, there was a predominance of the fibrous component with the presence of fat cells within the gland compartments. Immunohistochemical findings of parotid gland of control group revealed positive scattered actin staining of weak to mild quantity in cells embracing some acini and intralobular ducts. Expression of PCNA in actin-positive cells revealed few scattered reactions embracing some acini and small ducts. Parotid gland of diabetic dogs revealed positive actin staining of mild-to-moderate quantity in the cells encircling the acini, intralobular, and some interlobular ducts. Expression of PCNA in actin- positive cells revealed mild-to-moderate positive reaction more concentrated in the cells surrounding both acini and intercalated ducts.
CONCLUSION: Routine histological findings of diabetic dogs in our findings showed abundant pathological changes in parenchymal tissue elements, including acinar, ductal, and MECs that had a significant impact on saliva production and secretion resulting in dry mouth. The proliferative activity of MECs in the control group indicated a routine regeneration process, whereas the abundant proliferative activity in the diabetic group might indicate pathological transformation rather than regeneration, especially because no remedial measures were taken during this investigation.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Hassan SS, Alqahtani MS. Comparative study of cytokeratin immunostaining of parotid gland parenchyma in normal, diabetic, and excretory duct ligation of Mongrel dogs. Eur J Dent. 2022. https://doi.org/10.1055/s-0042-1744372 PMid35728611
Gaber W, Shalaan SA, Misk NA, Ibrahim A. Surgical anatomy, morphometry, and histochemistry of major salivary glands in dogs: Updates and recommendations. Int J Vet Health Sci Res. 2020;8(2):252-9. https://doi. org/10.19070/2332-2748-2000048
Hassan SS, Attia MA, Attia AM, Nofal RA, Fathi A. Distribution of cytokeratin 17 in the parenchymal elements of rat’s submandibular glands subjected to fractionated radiotherapy. Eur J Dent. 2020;14(3):440-7. https://doi.org/10.1055/s-0040-1713705 PMid32590870
Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: A review. J Dent. 2005;33(3):223-33. https://doi.org/10.1016/j.jdent.2004.10.009 PMid15725522
Schipper R, Silletti E, Vingerhoeds MH. Saliva as research material: Biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52(12):1114-35. https://doi.org/10.1016/j.archoralbio.2007.06.009 PMid17692813
Maria OM, Maria SM, Redman RS, Maria AM, Saad El-Din TA, Soussa EF, et al. Effects of double ligation of Stensen’s duct on the rabbit parotid gland. Biotech Histochem. 2014;89(3):181-98. https://doi.org/10.3109/10520295.2013.832798 PMid24053197
Kudiyirickal MG, Pappachan JM. Diabetes mellitus and oral health. Endocrine. 2015;49(1):27-34. https://doi.org/10.1007/s12020-014-0496-3 PMid25487035
De Almeida PD, Gregio AM, Machado MA, de Lima AA, Azevedo LR. Saliva composition and functions: A comprehensive review. J Contemp Dent Pract. 2008;9(3):72-80. https://doi.org/10.5005/jcdp-9-3-72 PMid18335122
Wang S, Marchal F, Zou Z, Zhou J, Qi S. Classification and management of chronic sialadenitis of the parotid gland. J Oral Rehabil. 2009;36(1):2-8. https://doi.org/10.1111/j.1365-2842.2008.01896.x PMid18976271
Neyraud E, Dransfield E. Relating ionisation of calcium chloride in saliva to bitterness perception. Physiol Behav. 2004;81(3):505-10. https://doi.org/10.1016/j.physbeh.2004.02.018 PMid15135023
Stewart CR, Obi N, Epane EC, Akbari AA, Halpern L, Southerland JH, et al. Effects of diabetes on salivary gland protein expression of tetrahydrobiopterin and nitric oxide synthesis and function. J Periodontol. 2016;87(6):735-41. https://doi.org/10.1902/jop.2016.150639 PMid26777763
Heji ES, Bukhari AA, Bahammam MA, Homeida LA, Aboalshamat KT, Aldahlawi SA. Periodontal disease as a predictor of undiagnosed diabetes or prediabetes in dental patients. Eur J Dent. 2021;15(2):216-21. https://doi.org/10.1055/s-0040-1719208 PMid33285572
Alqahtani MS, Hassan SS. Immunohistochemical evaluation of the pathological effects of diabetes mellitus on the major salivary glands of Albino rats. Eur J Dent. 2022. https://doi.org/10.1055/s-0042-1749159 PMid35785821
Caldeira EJ, Camelli JA, Cagnon VH. Stereology and ultrastructure of the salivary glands of diabetic Nod mice submitted to long-term insulin treatment. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(2):930-7. https://doi.org/10.1002/ar.a.20236 PMid16142810
Sreebny LM, Yu A, Green A, Valdini A. Xerostomia in diabetes mellitus. Diabetes Care. 1992;15(7):900-4. https://doi.org/10.2337/diacare.15.7.900 PMid1516511
Chavez EM, Taylor GW, Borrell LN, Ship JA. Salivary function and glycemic control in older persons with diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(3):305-11. https://doi.org/10.1016/s1079-2104(00)70093-x PMid10710454
Kim SK, Cuzzort LM, McKean RK, Allen ED. Effects of diabetes and insulin on alpha-amylase messenger RNA levels in rat parotid glands. J Dent Res. 1990;69(8):1500-4. https://doi.org/10.1177/00220345900690081001 PMid2143513
Siudikiene J, Machiulskiene V, Nyvad B, Tenovuo J, Nedzelskiene I. Dental caries and salivary status in children with Type 1 diabetes mellitus, related to the metabolic control of the disease. Eur J Oral Sci. 2006;114(1):8-14. https://doi.org/10.1111/j.1600-0722.2006.00277.x PMid16460335
Alali F, Kochaji N. Proliferative activity of myoepithelial cells in normal salivary glands and adenoid cystic carcinomas based on double immunohistochemical labeling. Asian Pac J Cancer Prev. 2018;19(7):1965-70. https://doi.org/10.22034/APJCP.2018.19.7.1965 PMid30051681
Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO. CD29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Dis. 2017;24(4):561-72. https://doi.org/10.1111/odi.12812 PMid29197149
Kodama Y, Ozaki K, Sano T, Matsuura T, Narama I. Enhanced tumorigenesis of forestomach tumors induced by N-Methyl- N’-nitro-N-nitrosoguanidine in rats with hypoinsulinemic diabetes. Cancer Sci. 2010;101(7):1604-9. https://doi.org/10.1111/j.1349-7006.2010.01589.x PMid20497417
Tsujimura T, Ikeda R, Aiyama S. Changes in the number and distribution of myoepithelial cells in the rat parotid gland during postnatal development. Anat Embryol (Berl). 2006;211(5):567-74. https://doi.org/10.1007/s00429-006-0111-3 PMid16937148
Takahashi S, Shinzato K, Domon T, Yamamoto T, Wakita M. Mitotic proliferation of myoepithelial cells during regeneration of atrophied rat submandibular glands after duct ligation. J Oral Pathol Med. 2004;33(7):430-4. https://doi.org/10.1111/j.1600-0714.2004.00234.x PMid15250836
Redman RS. Myoepithelium of salivary glands. Microsc Res Tech. 1994;27(1):25-45. https://doi.org/10.1002/jemt.1070270103 PMid8155903
Duivenvoorden HM, Rautela J, Edgington-Mitchell LE, Alex S, Greening DW, Nowell CJ, et al. Myoepithelial cell- specific expression of stefin A as a suppressor of early breast cancer invasion. J Pathol. 2017;243(4):496-509. https://doi.org/10.1002/path.4990 PMid29086922
Burford-Mason AP, Cummins MM, Brown DH, MacKay AJ, Dardick I. Immunohistochemical analysis of the proliferative capacity of duct and acinar cells during ligation-induced atrophy and subsequent regeneration of rat parotid gland. J Oral Pathol Med. 1993;22(10):440-6. https://doi.org/10.1111/j.1600-0714.1993.tb00122.x PMid7907370
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107(7):1127-40. https://doi.org/10.1093/aob/mcq243 PMid21169293
Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): A dancer with many partners. J Cell Sci. 2003;116(Pt 15): 3051-60. https://doi.org/10.1242/jcs.00653 PMid12829735
Burgess KL, Dardick I, Cummins MM, Burford-Mason AP, Bassett R, Brown DH. Myoepithelial cells actively proliferate during atrophy of rat parotid gland. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82(6):674-80. https://doi.org/10.1016/s1079-2104(96)80443-4 PMid8974141
Takahshi S, Shinzato K, Domon T, Yamamoto T, Wakita M. Proliferation and distribution of myoepithelial cells during atrophy of the rat sublingual gland. J. Oral Pathol Med. 2003;32(2):90-4. https://doi.org/10.1034/j.1600-0714.2003.00043.x PMid12542831
Kim JM, Chung JY, Lee SY, Choi EW, Kim MK, Hwang CY, et al. Hypoglycemic effects of vanadium on alloxan monohydrate induced diabetic dogs. J Vet Sci. 2006;7(4):391-5. https://doi.org/10.4142/jvs.2006.7.4.391 PMid17106233
Ali SY. Stereological and immunohistochemical study on the Submandibular gland of diabetic Albino rats. J Am Sci. 2018;14(12):24-33. https://doi.org/10.7537/marsjas141218.04
Correia PN, Carpenter GH, Osailan SM, Paterson KL, Proctor GB. Acute salivary gland hypofunction in the duct ligation model in the absence of inflammation. Oral Dis. 2008;14(6):520-8. https://doi.org/10.1111/j.1601-0825.2007.01413.x PMid18221457
Mata AD, Marques D, Rocha S, Francisco H, Santos C, Mesquita MF, et al. Effects of diabetes mellitus on salivary secretion and its composition in the human. Mol Cell Biochem. 2004;261(1-2):137-42. https://doi.org/10.1023/b:mcbi.0000028748.40917.6f PMid15362496
Dawson L, Fox R, Smith P. Sjogrens syndrome--the non- apoptotic model of glandular hypofunction. Rheumatology (Oxford). 2006;45(7):792-8. https://doi.org/10.1093/rheumatology/kel067 PMid16595520
Aure MH, Arany S, Ovitt CE. Salivary glands: Stem cells, self- duplication, or both? J Dent Res. 2015;94(11):1502-7. https://doi.org/10.1177/0022034515599770 PMid26285812
Holmberg KV, Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. Monogr Oral Sci. 2014;24:1-13. https://doi.org/10.1159/000358776 PMid24862590
Miguel MC, Andrade ES, Taga R, Pinto LP, Souza LB. Hyperplasia of myoepithelial cells expressing calponin during atrophy of the rat parotid gland induced by duct ligation. Histochem J. 2002;34(10):499-506. https://doi.org/10.1023/a:1024761923303 PMid12945732
Ye P, Gao Y, Wei T, Yu GY, Peng X. Absence of myoepithelial cells correlates with invasion and metastasis of Carcinoma ex pleomorphic adenoma. Int J Oral Maxillofac Surg. 2017;46(8):958-64. https://doi.org/10.1016/j.ijom.2017.03.031 PMid28431798
Downloads
Published
How to Cite
License
Copyright (c) 2023 Sherif Hassan, Ibraheem Bamaga (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0