Nutrition Strategies Pre-infection, during, and Post-infection with Coronavirus Disease

Authors

  • Lamya Mallasi Department of Home Economics, Faculty of Science and Arts, Mahayel Aseer, King Khalid University, Abha, Saudi Arabia https://orcid.org/0000-0001-5048-2042
  • Fatimah A. Alsaeed Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia https://orcid.org/0000-0002-5291-7334
  • Dina M. D. Badr Department of Chemistry, Muhayil College of Science and Arts, King Khalid University, Abha, Saudi Arabia https://orcid.org/0000-0002-0293-8735
  • Suzy M. Salama Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan https://orcid.org/0000-0003-0430-1436

DOI:

https://doi.org/10.3889/oamjms.2023.11537

Keywords:

Coronavirus, Immunity, Gut microbiota, Breast-feeding

Abstract

Coronavirus disease is a serious viral infection that is characterized by severe inflammation and lymphopenia. The virus attacks many organs causing acute respiratory distress and malfunctioning of the organs leading to death. Through strengthening of the innate immune system, a balanced diet plays a critical role in defense against bacterial and viral diseases. A healthy diet before, during and after an infection can lessen the severity of the symptoms and speed up the recovery of damaged cells. Due to the Mediterranean diet’s high concentration of bioactive polyphenols, which have antioxidant, anti-inflammatory, and antithrombic properties, numerous studies have suggested that it is a preventative dietary strategy against many diseases including coronavirus disease. Nutrition and herbal plants play a key role to enhance the immunity of people to protect and fight against coronavirus. Diet rich in antioxidants and phytochemicals represents perfect barrier to the virus through elevation of the innate immunity of the body. In addition, gut microbiota including prebiotics, probiotics, and synbiotics were found to enhance immunity to reduce the symptoms of the disease during infection. Protein-rich foods and honey bee products reported significant role during and post-coronavirus infection. This review presents updated information from original pre-clinical and clinical researches, and review articles as well to expose the nutritive strategies including breastfeeding benefits to infants pre-infection, during, and post-infection with coronavirus.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. The Top 10 Causes of Death. Geneva: World Health Organization. Available from: https:// www.who.int/news-room/fact-sheets/detail/the-top-10-causes- of-death [Last accessed on 2022 Jan 16].

Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz- Cherry S. Influenza virus and SARS-CoV-2: Pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425-41. https://doi.org/10.1038/s41579-021-00542-7 PMid:33824495 DOI: https://doi.org/10.1038/s41579-021-00542-7

Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40(1):68-76. https://doi.org/10.1080/01652176.2020.1727993 PMid:32036774 DOI: https://doi.org/10.1080/01652176.2020.1727993

Adhikari B, Marasini BP, Rayamajhee B, Bhattarai BR, Lamichhane G, Khadayat K, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID‐19: A review. Phytother Res. 2021;35(3):1298-312. https://doi.org/10.1002/ptr.6893 PMid:33037698 DOI: https://doi.org/10.1002/ptr.6893

Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394-9. https://doi.org/10.1126/science.1085952 PMid:12730500 DOI: https://doi.org/10.1126/science.1085952

Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. Philadelphia, PA, USA: Taylor and Francis; 2017. p. 1-35. Available from: https://lccn.loc.gov/2015050960 [Last accessed on 2023 Mar 23].

Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020;12(4):1181. https://doi.org/10.3390/nu12041181 PMid:32340216. DOI: https://doi.org/10.3390/nu12041181

Valiei F, Leylabadlo HE, Ghotaslou A, Fallahi L, Ahmadian Z, Ghotaslou R. Role of dietary supplement in viral infection with an outlook on corona virus disease-2019. Rev Med Microbiol. 2022;33(1):e137-47. https://doi.org/10.1097/MRM.0000000000000251 DOI: https://doi.org/10.1097/MRM.0000000000000251

Başaran B, Pekmezci H. An analysis of the changes in food consumption frequencies before and during the COVID-19 pandemic: Turkey. Progress Nutr. 2021;23(4):e2021218. https://doi.org/10.23751/pn.v23i4.10431

Angelidi AM, Kokkinos A, Katechaki E, Ros E, Mantzoros CS. Mediterranean diet as a nutritional approach for COVID-19. Metabolism. 2021;114:154107. https://doi.org/10.1016/j.metabol.2020.154407 PMid:33080270 DOI: https://doi.org/10.1016/j.metabol.2020.154407

Xavier-Santos D, Padilha M, Fabiano GA, Vinderola G, da Cruz AG, Sivieri K, et al. Evidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: A bibliometric analysis and systematic review. Trends Food Sci Technol. 2022;120:174-92. https://doi.org/10.1016/j.tifs.2021.12.033 PMid:35002079 DOI: https://doi.org/10.1016/j.tifs.2021.12.033

Ismail NF, Zulkifli MF, Ismail WI. Therapeutic potentials of bee products for treatment of COVID-19. Med J Malaysia. 2022;21(1): 19-29. https://doi.org/10.31436/imjm.v21i1 DOI: https://doi.org/10.31436/imjm.v21i1.1893

Banq A, Kinikar AA, Mallikarjuna H, Shah J, Khurana O. Breastfeeding in coronavirus disease 2019 (COVID-19): Position statement of Indian academy of pediatrics and infant and young child feeding chapter. Indian Pediatr. 2021;59(1):58-62. PMid:34810293 DOI: https://doi.org/10.1007/s13312-022-2422-8

Perez SE, Centeno LD, Cheng WA, Ruiz CJ, Lee Y, Congrave- Wilson Z, et al. Human milk SARS-CoV-2 antibodies up to 6 months after vaccination. Pediatrics. 2022;149(2):e2021054260. https://doi.org/10.1542/peds.2021-054260 PMid:34981122 DOI: https://doi.org/10.1542/peds.2021-054260

Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, et al. SARS-CoV-2-specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women. J Am Med Assoc. 2021;325(19):2013-4. https://doi.org/10.1001/jama.2021.5782 PMid:33843975 DOI: https://doi.org/10.1001/jama.2021.5782

Unicef-Uk. Baby-Friendly Initiative Statement on Infant Feeding during Covid 19 Outbreak. Avaiable from: https://www.unicef.org.uk/baby friendly/infant-feeding-during-the-covid-19 [Last accessed on 2022 Jan 01].

Zildzic M, Masic I, Salihefendic N, Jasic M, Hajdarevic B. The importance of nutrition in boosting immunity for prevention and treatment COVID-19. Int J Biomed Healthc. 2020;8(2):73-9. https://doi.org/10.5455/ijbh.2 DOI: https://doi.org/10.5455/ijbh.2020.8.73-79

James PT, Ali Z, Armitage AE, Bonell A, Cerami C, Drakesmith H, et al. The role of nutrition in COVID-19 susceptibility and severity of disease: A systematic review. J Nutr. 2021;151(7):1854-78. https://doi.org/10.1093/jn/nxab059 PMid:33982105 DOI: https://doi.org/10.1093/jn/nxab059

Keusch GT. The history of nutrition: Malnutrition, infection and immunity. J Nutr. 2003;133(1):336S-40. https://doi.org/10.1093/jn/133.1.336S PMid:12514322 DOI: https://doi.org/10.1093/jn/133.1.336S

Scrimshaw NS, SanGiovanni JP. Synergism of nutrition, infection, and immunity: An overview. Am J Clin Nutr. 1997;66(2):464S-77. https://doi.org/10.1093/ajcn/66.2.464S PMid:9250134 DOI: https://doi.org/10.1093/ajcn/66.2.464S

Naja F, Hamadeh R. Nutrition amid the COVID-19 pandemic: Amulti-level framework for action. Eur J Clin Nutr. 2020;74(8):1117-

https://doi.org/10.1038/s41430-020-0634-3 PMid:32313188 DOI: https://doi.org/10.1038/s41430-020-0634-3

Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389 PMid:29897866 DOI: https://doi.org/10.1056/NEJMoa1800389

Salas-Salvadó J, Bulló M, Estruch R, Ros E, Covas MI, Ibarrola- Jurado N, et al. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann Intern Med. 2014;160(1):1-10. https://doi.org/10.7326/M13-1725 PMid:24573661 DOI: https://doi.org/10.7326/M13-1725

Salama SM. The Impact of Wild Fruits to a Better Life Worldwide. Wild Fruits: Composition, Nutritional Value and Products: Berlin: Springer; 2019. p. 91-105. https://doi. org/10.1007/978-3-030-31885-7_8 DOI: https://doi.org/10.1007/978-3-030-31885-7_8

Detopoulou P, Demopoulos CA, Antonopoulou S. Micronutrients, phytochemicals and mediterranean diet: A potential protective role against COVID-19 through modulation of PAF actions and metabolism. Nutrients. 2021;13(2):462. https://doi.org/10.3390/nu13020462 PMid:33573169 DOI: https://doi.org/10.3390/nu13020462

Santhakumar AB, Bulmer AC, Singh I. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J Hum Nutr Diet. 2014;27(1):1-21. https://doi.org/10.1111/jhn.12177 PMid:24205990 DOI: https://doi.org/10.1111/jhn.12177

Ludovici V, Barthelmes J, Nagele MP, Flammer AJ, Sudano I. Polyphenols: Anti-platelet nutraceutical? Curr Pharm Des. 2018;24(2):146-57. https://doi.org/10.2174/1381612823666171109104600 PMid:29119922 DOI: https://doi.org/10.2174/1381612823666171109104600

Izzo L, Santonastaso A, Cotticelli G, Federico A, Pacifico S, Castaldo L, et al. An Italian survey on dietary habits and changes during the COVID-19 Lockdown. Nutrients. 2021;13(4):1197. https://doi.org/10.3390/nu13041197 PMid:33916384 DOI: https://doi.org/10.3390/nu13041197

Kaufman-Shriqui V, Navarro DA, Raz O, Boaz M. Dietary changes and anxiety during the coronavirus pandemic: A multinational survey. Eur J Clin Nutr. 2022;76(1):84-92. https://doi.org/10.1038/s41430-021-00897-3 PMid:33742156 DOI: https://doi.org/10.1038/s41430-021-00897-3

Salama S, Shou Q, Abd El-Wahed AA, Elias N, Xiao J, Swillam A, et al. Royal Jelly: Beneficial properties and synergistic effects with chemotherapeutic drugs with particular emphasis in anticancer strategies. Nutrients. 2022;14(19):4166. https://doi.org/10.3390/nu14194166 PMid:36235818 DOI: https://doi.org/10.3390/nu14194166

Salama SM, Ibrahim IA, Shahzad N, Al‐Ghamdi S, Ayoub N, AlRashdi AS, et al. Hepatoprotectivity of Panduratin A against liver damage: In vivo demonstration with a rat model of cirrhosis induced by thioacetamide. APMIS. 2018;126(9):710-21. https://doi.org/10.1111/apm.12878 PMid:30058214 DOI: https://doi.org/10.1111/apm.12878

AlRashdi AS, Salama SM, Alkiyumi SS, Abdulla MA, Hadi AH, Abdelwahab SI, et al. Mechanisms of gastroprotective effects of ethanolic leaf extract of Jasminum sambac against HCl/ ethanol-induced gastric mucosal injury in rats. Evid Based Complement Alternat Med. 2012;2012:786426. https://doi.org/10.1155/2012/786426 PMid:22550543 DOI: https://doi.org/10.1155/2012/786426

Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS- CoV) infection. Arch Med Res. 2020;51(5):384-7. https://doi.org/10.1016/j.arcmed.2020.04.019 PMid:32402576 DOI: https://doi.org/10.1016/j.arcmed.2020.04.019

Ntyonga-Pono MP. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan Afr Med J. 2020;35:12. https://doi.org/10.11604/pamj.2020.35.2.22877 PMid:32528623 DOI: https://doi.org/10.11604/pamj.2020.35.2.22877

Namdeo P. A review on herbal immunity booster and nutrition-to fight against Covid-19. J Pharm Adv Res. 2021;4(5):1226-37.

Arshad MS, Khan U, Sadiq A, Khalid W, Hussain M, Yasmeen A, et al. Coronavirus disease (COVID‐19) and immunity booster green foods: A mini review. Food Sci Nutr. 2020;8(8):3971-6. https://doi.org/10.1002/fsn3.1719 PMid:32837716 DOI: https://doi.org/10.1002/fsn3.1719

Pedrosa LF, Barros AN, Leite-Lais L. Nutritional risk of Vitamin D, Vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin Nutr ESPEN. 2022;47:9-27. https://doi.org/10.1016/j.clnesp.2021.11.003 PMid:35063248 DOI: https://doi.org/10.1016/j.clnesp.2021.11.003

Quigley EM. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol. 2019;17(2):333-44. https://doi.org/10.1016/j.cgh.2018.09.028 PMid:30267869 DOI: https://doi.org/10.1016/j.cgh.2018.09.028

Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. https://doi.org/10.1038/nature09646 PMid:21270894 DOI: https://doi.org/10.1038/nature09646

Giovannini M, Verduci E, Gregori D, Ballali S, Soldi S, Ghisleni D, et al. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: Randomized multicenter trial. J Am Coll Nutr. 2014;33(5):385-93. https://doi.org/10.1080/07315724 .2013.878232 PMid:25302927 DOI: https://doi.org/10.1080/07315724.2013.878232

Le Bourgot C, Le Normand L, Formal M, Respondek F, Blat S, Apper E, et al. Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs. Br J Nutr. 2017;117(1):83-92. https://doi.org/10.1017/S0007114516004268 PMid:28115029 DOI: https://doi.org/10.1017/S0007114516004268

Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity. 2018;48(5):992-1005. https://doi.org/10.1016/j.immuni.2018.04.022 PMid:29768180 DOI: https://doi.org/10.1016/j.immuni.2018.04.022

Logtenberg MJ, Akkerman R, An R, Hermes GD, de Haan BJ, Faas MM, et al. Fermentation of chicory fructo-oligosaccharides and native inulin by infant fecal microbiota attenuates pro- inflammatory responses in immature dendritic cells in an infant-age-dependent and fructan-specific way. Mol Nutr Food Res. 2020;64(13):e202000068. https://doi.org/10.1002/mnfr.202000068 DOI: https://doi.org/10.1002/mnfr.202000068

Geller A, Yan J. Could the induction of trained immunity by β-glucan serve as a defense against COVID-19? Front Immunol. 2020;11:1782. https://doi.org/10.3389/fimmu.2020.01782 PMid:32760409 DOI: https://doi.org/10.3389/fimmu.2020.01782

Chen J, Vitetta L. Modulation of gut microbiota for the prevention and treatment of COVID-19. J Clin Med. 2021;10(13):2903. https://doi.org/10.3390/jcm10132903 PMid:34209870 DOI: https://doi.org/10.3390/jcm10132903

Ikewaki N, Iwasaki M, Kurosawa G, Rao KS, Lakey-Beitia J, Preethy S, et al. β-glucans: Wide-spectrum immune- balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach to COVID-19. Hum Vaccin Immunother. 2021;17(8):2808-13. https://doi.org/10.1080/21645515.2021.1880210 PMid:33651967 DOI: https://doi.org/10.1080/21645515.2021.1880210

Murphy EJ, Masterson C, Rezoagli E, O’Toole D, Major I, Stack GD, et al. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects-implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020;732(25):139330. https://doi.org/10.1016/j.scitotenv.2020.139330 PMid:32413619 DOI: https://doi.org/10.1016/j.scitotenv.2020.139330

FAO/WHO. Guidelines for the evaluation of probiotics in food– Joint Food and Agricultural Organization of the United Nations and World Health Organization Working Group Meeting Report. London Ontario, Canada: World Health Organization; 2002. Available from: http://www.who.int/foodsafety/publications/fs_ management/probiotics2/en/index.html [Last accessed on 2023 Mar 23].

Bottari B, Castellone V, Neviani E. Probiotics and COVID-19. Int J Food Sci Nutr. 2021;72(3):293-9. https://doi.org/10.1080/09637486.2020.1807475 PMid:32787470 DOI: https://doi.org/10.1080/09637486.2020.1807475

Hooper LV. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol. 2009;7(5):367-74. https://doi.org/10.1038/nrmicro2114 PMid:19369952 DOI: https://doi.org/10.1038/nrmicro2114

Cresci GA, Bawden E. Gut microbiome: What we do and don’t know. Nutr Clin Pract 2015;30(6):734-46. https://doi.org/10.1177/0884533615609899 PMid:26449893 DOI: https://doi.org/10.1177/0884533615609899

Rupa P, Mine Y. Recent advances in the role of probiotics in human inflammation and gut health. J Agric Food Chem. 2012;60(34):8249-56. https://doi.org/10.1021/jf301903t PMid:22897745 DOI: https://doi.org/10.1021/jf301903t

Molina-Molina E, Baccetto RL, Wang DQ, de Bari O, Krawczyk M, Portincasa P. Exercising the hepatobiliary‐gut axis. The impact of physical activity performance. Eur J Clin Invest. 2018;48(8):e12958. https://doi.org/10.1111/eci.12958 PMid:9797516 DOI: https://doi.org/10.1111/eci.12958

Stasangi N, Devki VG, Neelam DK, Rahi RK. Microbiota of human gut-A natural remedy for human illness. Int J Pharm Biol Sci. 2021;11(1):29-37. https://doi.org/10.21276/ijpbs.2021.11.1.4 DOI: https://doi.org/10.21276/ijpbs.2021.11.1.4

Sasi M, Kumar S, Hasan M, Garcia-Gutierrez E, Kumari S, Prakash O, et al. Current trends in the development of soy- based foods containing probiotics and paving the path for soy- synbiotics. Crit Rev Food Sci Nutr. 2022;10:1-19. https//doi.org/10.1080/10408398.2022.2078272 PMid:35611888 DOI: https://doi.org/10.1080/10408398.2022.2078272

Fuhren J, Schwalbe M, Rösch C, Nijland R, Wels M, Schols HA, et al. Dietary inulin increases Lactiplantibacillus plantarum strain Lp900 persistence in rats depending on the dietary-calcium level. Appl Environ Microbiol. 2021;87(9):e00122-21. https://doi.org/10.1128/AEM.00122-21 PMid:33608291 DOI: https://doi.org/10.1128/AEM.00122-21

Chand V. Nutrition as a key weapon in strengthening immune system relative to pandemic novel Coronavirus disease (COVID-19): A review. Int J Health Sci Res. 2020;10(8):96-104.

Khayyatzadeh SS. Nutrition and infection with COVID-19. J Nutr Food Secur. 2020;5(2):93-6. DOI: https://doi.org/10.18502/jnfs.v5i2.2795

Ciric J, Djordjevic V, Baltic T, Lazic IB, Petronijevic R, Spiric D, et al., editors. Protective effects of honeybee products against COVID-19: A review. IOP Conf Ser Earth Environ Sci. 2021:854:012014. https://doi.org/10.1088/1755-1315/854/1/012014 DOI: https://doi.org/10.1088/1755-1315/854/1/012014

Ismail M, Abdallah EM, Elsharkawy ER. Physico-chemical properties, antioxidant, and antimicrobial activity of five varieties of honey from Saudi Arabia. Asia Pac J Mol Biol Biotechnol. 2021;2021:27-34. https://doi.org/10.35118/apjmbb.2021.029.4.03 DOI: https://doi.org/10.35118/apjmbb.2021.029.4.03

Maitip J, Mookhploy W, Khorndork S, Chantawannakul P. Comparative study of antimicrobial properties of bee venom extracts and melittins of honey bees. Antibiotics (Basel). 2021;10(12):1503. https://doi.org/10.3390/antibiotics10121503 PMid:34943715 DOI: https://doi.org/10.3390/antibiotics10121503

Yang W, Hu FL, Xu XF. Bee venom and SARS-CoV-2. Toxicon. 2020;181:69-70. https://doi.org/10.1016/j.toxicon.2020.04.105 PMid:32360140 DOI: https://doi.org/10.1016/j.toxicon.2020.04.105

Sun S, He J, Liu M, Yin G, Zhang X. A great concern regarding the authenticity identification and quality control of Chinese propolis and Brazilian green propolis. J Food Nutr Res. 2019;7(10):725-35. https://doi.org/10.12691/jfnr-7-10-6 DOI: https://doi.org/10.12691/jfnr-7-10-6

Santos LM, Fonseca MS, Sokolonski AR, Deegan KR, Araújo RP, Umsza-Guez MA, et al. Propolis: Types, composition, biological activities, and veterinary product patent prospecting. J Sci Food Agric. 2020;100(4):1369-82. https://doi.org/10.1002/jsfa.10024 PMid:31487405 DOI: https://doi.org/10.1002/jsfa.10024

Trinovani E, Prawira-Atmaja M, Kusmiyati M, Harianto S, Maulana H, editors. Total polyphenols and antioxidant activities of green tea powder from GMB 7 and GMB 9 tea clones. IOP Conf Ser Earth Environ Sci. 2022;974:012113. https://doi.org/10.1088/1755-1315/974/1/012113 DOI: https://doi.org/10.1088/1755-1315/974/1/012113

Ushiroda C, Naito Y, Takagi T, Uchiyama K, Mizushima K, Higashimura Y, et al. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. J Clin Biochem Nutr. 2019;65(1):34-46. https://doi.org/10.3164/jcbn.18-116 PMid:31379412 DOI: https://doi.org/10.3164/jcbn.18-116

Wang YQ, Li QS, Zheng XQ, Lu JL, Liang YR. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules. 2021;26(13):3962. https://doi.org/10.3390/molecules26133962 PMid:34209485 DOI: https://doi.org/10.3390/molecules26133962

Potta SP, Doss MX, Hescheler J, Sachinidis A. Epigallocatechin-3-gallate (EGCG): A structural target for the development of potential therapeutic drugs against anti-proliferative diseases. Drug Des Rev Online. 2005;2(1):85-91. https://doi.org/10.2174/1567269053390329 DOI: https://doi.org/10.2174/1567269053390329

Shan Z, Nisar MF, Li M, Zhang C, Wan CC. Theaflavin chemistry and its health benefits. Oxid Med Cell Longev. 2021;2021:6256618. https://doi.org/10.1155/2021/6256618 PMid:34804369 DOI: https://doi.org/10.1155/2021/6256618

Vassilopoulou E, Feketea G, Koumbi L, Mesiari C, Berghea EC, Konstantinou GN. Breastfeeding and COVID-19: From nutrition to immunity. Front Immunol. 2021;12:661806. https://doi.org/10.3389/fimmu.2021.661806 PMid:33897707 DOI: https://doi.org/10.3389/fimmu.2021.661806

Galindo-Sevilla ND, Contreras-Carreto NA, Rojas-Bernabé A, Mancilla-Ramírez J. Breastfeeding and COVID-19. Gac Méd Méx. 2021;157(2):194-200. https://doi.org/10.24875/gmm.20000665 PMid:34270527 DOI: https://doi.org/10.24875/GMM.20000665

Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75. https://doi.org/10.1016/j.cytogfr.2020.06.001 PMid:32513566 DOI: https://doi.org/10.1016/j.cytogfr.2020.06.001

Lordan R, Tsoupras A, Zabetakis I, Demopoulos CA. Forty years since the structural elucidation of platelet-activating factor (PAF): Historical, current, and future research perspectives. Molecules. 2019;24(23):4411. https://doi.org/10.3390/molecules24234414 PMid:31816871 DOI: https://doi.org/10.3390/molecules24234414

Ferro Y, Pujia R, Maurotti S, Boragina G, Mirarchi A, GnagnarellaP, et al. Mediterranean diet a potential strategy against SARS-CoV-2 infection: A narrative review. Medicina (Kaunas). 2021;57(12):1389. https://doi.org/10.3390/medicina57121389 PMid:34946334 DOI: https://doi.org/10.3390/medicina57121389

Perez-Araluce R, Martinez-Gonzalez M, Fernández-Lázaro C, Bes-Rastrollo M, Gea A, Carlos S. Mediterranean diet and the risk of COVID-19 in the “Seguimiento Universidad de Navarra” cohort. Clin Nutr. 2021; 41:3061-3068. https://doi.org/10.1016/j.clnu.2021.04.001 DOI: https://doi.org/10.1016/j.clnu.2021.04.001

Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami P, Ravindra P. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol. 202011:570122. https://doi.org/10.3389/fimmu.2020.570122 PMid:33117359 DOI: https://doi.org/10.3389/fimmu.2020.570122

Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, et al. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A review. Protein J. 2020;39(6):644-56. https://doi.org/10.1007/s10930-020-09935-8 PMid:33106987 DOI: https://doi.org/10.1007/s10930-020-09935-8

Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. https://doi.org/10.1016/j.clim.2020.108545 PMid:32710937 DOI: https://doi.org/10.1016/j.clim.2020.108545

Salama SM, Abdulla MA, AlRashdi AS, Ismail S, Alkiyumi SS, Golbabapour S. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats. BMC Complement Altern Med. 2013;13(1):56. https://doi.org/10.1186/1472-6882-13-56 PMid:23496995 DOI: https://doi.org/10.1186/1472-6882-13-56

Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911-20. https://doi.org/10.1002/ptr.6738 PMid:32430996 DOI: https://doi.org/10.1002/ptr.6738

Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct. 2020;1221:128823. https://doi.org/10.1016/j.molstruc.2020.128823 PMid:32834111 DOI: https://doi.org/10.1016/j.molstruc.2020.128823

Vonk MM, Diks MA, Wagenaar L, Smit JJ, Pieters RH, Garssen J, et al. Improved efficacy of oral immunotherapy using non- digestible oligosaccharides in a murine cow’s milk allergy model: A potential role for Foxp3+ regulatory T cells. Front Immunol. 2017;8:1230. https://doi.org/10.3389/fimmu.2017.01230 PMid:29033945 DOI: https://doi.org/10.3389/fimmu.2017.01230

Fuller R, Moore MV, Lewith G, Stuart BL, Ormiston RV, Fisk HL, et al. Yeast-derived β-1, 3/1, 6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition. 2017;39-40:30-5. https://doi.org/10.1016/j.nut.2017.03.003 PMid:28606567 DOI: https://doi.org/10.1016/j.nut.2017.03.003

Dharsono T, Rudnicka K, Wilhelm M, Schoen C. Effects of yeast (1, 3)-(1, 6)-beta-glucan on severity of upper respiratory tract infections: A double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr. 2019;38(1):40-50. https://doi.org/10.1080/07315724.2018.1478339 PMid:30198828 DOI: https://doi.org/10.1080/07315724.2018.1478339

Hu J, Zhang L, Lin W, Tang W, Chan FK, Ng SC. Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends Food Sci Technol. 2021;108:187-96. https://doi.org/10.1016/j.tifs.2020.12.009 PMid:33519087 DOI: https://doi.org/10.1016/j.tifs.2020.12.009

Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 2020;12(6):1718. https://doi.org/10.3390/nu12061718 PMid:32521760 DOI: https://doi.org/10.3390/nu12061718

D’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the management of SARS-CoV2 infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med (Lausanne). 2020;7:389. https://doi.org/10.3389/fmed.2020.00389 PMid:32733907 DOI: https://doi.org/10.3389/fmed.2020.00389

Tang H, Bohannon L, Lew M, Jensen D, Jung SH, Zhao A, et al. Randomised, double-blind, placebo-controlled trial of Probiotics To Eliminate COVID-19 Transmission in Exposed Household Contacts (PROTECT-EHC): A clinical trial protocol. BMJ. 2021;11(5):e047069. https://doi.org/10.1136/bmjopen-2020-047069 PMid:33952552 DOI: https://doi.org/10.1136/bmjopen-2020-047069

Gutiérrez-Castrellón P, Gandara-Martí T, Abreu AT, Nieto-Rufino CD, López-Orduña E, Jiménez-Escobar I, Jiménez-Gutiérrez C, López-Velazquez G and Espadaler-Mazo J. 2021. Efficacy and safety of novel probiotic formulation in adult Covid19 outpatients: A randomized, placebo-controlled clinical trial. medRxiv. 2021:2021-05. https://doi.org/10.1101/2021.05.20.21256954 DOI: https://doi.org/10.1101/2021.05.20.21256954

Ke E, Zhang H. Clinical effects of probiotics in ordinary- type COVID-19 patients with diarrhea. World Chinese J Digestol. 2020;28(17):834-8. https://doi.org/10.11569/wcjd.v28.i17.834 DOI: https://doi.org/10.11569/wcjd.v28.i17.834

Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V, Di Sabatino A, et al. Implications of SARS‐CoV‐2 infection for neurogastroenterology. Neurogastroenterol Motil. 2021;33(3):e14104. https://doi.org/10.1111/nmo.14104 DOI: https://doi.org/10.1111/nmo.14104

Cengiz M, Uysal BB, Ikitimur H, Ozcan E, Islamoğlu MS, Aktepe E, et al. Effect of oral l-Glutamine supplementation on Covid-19 treatment. Clin Nutr Exp. 2020;33:24-31. https://doi.org/10.1016/j.yclnex.2020.07.003 PMid:32835086 DOI: https://doi.org/10.1016/j.yclnex.2020.07.003

Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020;30:101063. https://doi.org/10.1016/j.rmcr.2020.101063 PMid:32322478 DOI: https://doi.org/10.1016/j.rmcr.2020.101063

Saeed H, Osama H, Abdelrahman MA, Madney YM, Harb HS, Abdelrahim ME, et al. Vitamins and other immune-supportive elements as cofactors for passing the COVID-19 pandemic. Beni Suef Univ J Basic Appl Sci. 2021;10(1):71. https://doi.org/10.1186/s43088-021-00163-2 PMid:34729372 DOI: https://doi.org/10.1186/s43088-021-00163-2

Assimakopoulos SF, Marangos M. N-acetyl-cysteine may prevent COVID-19-associated cytokine storm and acute respiratory distress syndrome. Med Hypotheses. 2020;140:109778. https://doi.org/10.1016/j.mehy.2020.109778 PMid:32344315 DOI: https://doi.org/10.1016/j.mehy.2020.109778

Arentz S, Hunter J, Khamba B, Mravunac M, Lee Z, Alexander K, et al. Honeybee products for the treatment and recovery from viral respiratory infections including SARS-COV-2: A rapid systematic review. Integr Med Res. 2021;10(Suppl):100779. https://doi.org/10.3390/ijerph19158905 PMid:34611512 DOI: https://doi.org/10.1016/j.imr.2021.100779

Berretta AA, Silveira MA, Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS- CoV-2 infection and COVID-19. Biomed Pharmacother. 2020;131:110622. https://doi.org/10.1016/j.biopha.2020.110622 PMid:32890967 DOI: https://doi.org/10.1016/j.biopha.2020.110622

Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MA, et al. Anti-viral and immunomodulatory properties of propolis: Chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against SARS-CoV-2. Foods. 2021;10(8):1776. https://doi.org/10.3390/foods10081776 PMid:34441553 DOI: https://doi.org/10.3390/foods10081776

Romero-Martínez BS, Montaño LM, Solís-Chagoyán H, Sommer B, Ramírez-Salinas GL, Pérez-Figueroa GE, et al. Possible beneficial actions of caffeine in SARS-CoV-2. Int J Mol Sci. 2021;22(11):5460. https://doi.org/10.3390/ijms22115460 PMid:34067243 DOI: https://doi.org/10.3390/ijms22115460

Kumar K, Babu SC. An analysis of consumers’ preferences for orange juice in India during COVID-19. Stud Agric Econ. 2021;123(3):131-40. https://doi.org/10.7896/j.2151 DOI: https://doi.org/10.7896/j.2151

Milani GP, Macchi M, Guz-Mark A. Vitamin C in the treatment of COVID-19. Nutrients. 2021;13(4):1172. https://doi.org/10.3390/nu13041172 PMid:33916257 DOI: https://doi.org/10.3390/nu13041172

Salvador-Pinos CA, Martinez EZ, Dueñas-Matute SE, de Aguinaga RR, Jácome JC, Michelena-Tupiza S, et al. Health of the newborn and breastfeeding during the COVID-19 pandemic: A literature review. Rev Bras Ginecol Obstet. 2022;44(3):311-8. https://doi.org/10.1055/s-0041-1741449 PMid:35100631 DOI: https://doi.org/10.1055/s-0041-1741449

Davanzo R, Moro G, Sandri F, Agosti M, Moretti C, Mosca F. Breastfeeding and coronavirus disease‐2019: Ad interim indications of the Italian Society of Neonatology endorsed by the Union of European Neonatal & Perinatal Societies. Matern Child Nutr. 2020;16(3):e13010. https://doi.org/10.1111/mcn.13010 PMid:32243068 DOI: https://doi.org/10.1111/mcn.13010

Walker KF, O’Donoghue K, Grace N, Dorling J, Comeau JL, Li W, et al. Maternal transmission of SARS‐COV‐ 2 to the neonate, and possible routes for such transmission: A systematic review and critical analysis. BJOG. 2020;127(11):1324-36. https://doi.org/10.1111/1471-0528.16362 PMid:32531146 DOI: https://doi.org/10.1111/1471-0528.16362

Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P. SARS- CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ. 2020;29(7):973-87. https://doi.org/10.1016/j.hlc.2020.05.101 PMid:32601020 DOI: https://doi.org/10.1016/j.hlc.2020.05.101

Lee IC, Huo TI, Huang YH. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc. 2020;83(6):521-3. https://doi.org/10.1097/JCMA.0000000000000319 PMid:32243269 DOI: https://doi.org/10.1097/JCMA.0000000000000319

Nardo AD, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021;41(1):20-32. https://doi.org/10.1111/liv.14730 PMid:33190346 DOI: https://doi.org/10.1111/liv.14730

Cataldi M, Pignataro G, Taglialatela M. Neurobiology of coronaviruses: Potential relevance for COVID-19. Neurobiol Dis. 2020;143:1050007. https://doi.org/10.1016/j.nbd.2020.105007 PMid:32622086 DOI: https://doi.org/10.1016/j.nbd.2020.105007

Ali AM, Kunugi H. Skeletal muscle damage in COVID-19: A call for action. Medicina (Kaunas). 2021;57(4):372. https://doi.org/10.3390/medicina57040372 PMid:33921429 DOI: https://doi.org/10.3390/medicina57040372

Barrea L, Vetrani C, Caprio M, Cataldi M, Ghoch ME, Elce A, et al. From the Ketogenic diet to the Mediterranean diet: The potential dietary therapy in patients with obesity after CoVID-19 infection (post CoVID syndrome). Curr Obes Rep. 2022;11(3):144-65. https://doi.org/10.1007/s13679-022-00475-z PMid:35524067 DOI: https://doi.org/10.1007/s13679-022-00475-z

Merra G, Miranda R, Barrucco S, Gualtieri P, Mazza M, Moriconi E, et al. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: A pilot double-blind study. Eur Rev Med Pharmacol Sci. 2016;20(12):2613-21. https://pubmed.ncbi.nlm.nih.gov/27383313 PMid:27383313

Luo E, Zhang D, Luo H, Liu B, Zhao K, Zhao Y, et al. Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): an empirical study from Wuhan, Hubei Province, China. Chin Med. 2020;15(1):34. https://doi.org/10.1186/s13020-020-00317-x 113. Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013;15(2):395-9. https://doi.org/10.1016/j.intimp.2012.11.020 PMid:23261366 DOI: https://doi.org/10.1016/j.intimp.2012.11.020

Downloads

Published

2023-04-13

How to Cite

1.
Mallasi L, Alsaeed FA, Badr DMD, Salama SM. Nutrition Strategies Pre-infection, during, and Post-infection with Coronavirus Disease. Open Access Maced J Med Sci [Internet]. 2023 Apr. 13 [cited 2024 Apr. 28];11(F):237-49. Available from: https://oamjms.eu/index.php/mjms/article/view/11537

Issue

Section

Narrative Review Article

Categories