Anti-diabetic Attributes of Desert Plant Retama: A Mini Review on its Traditional Uses and Potential Chemical Constituents
DOI:
https://doi.org/10.3889/oamjms.2023.11607Keywords:
Retama, Diabetes, Phytoconstituents, Pharmacological potential, Antidibetic, InsulinAbstract
BACKGROUND: Diabetes mellitus (DM) is a fast-growing metabolic disorder, which affect millions around the world mostly people from developing nations. The rise of diabetes is further set to rise more in the coming years in all inhabited continents of the world. DM mainly attributed for food and lifestyle changes, less or no physical activity, obese, overweight, and major socioeconomic changes. In recent years, herbal medicine is incredibly growing because many natural products exhibit less or no side effects. It is well-established that nature-derived products protect β-cells and decrease blood glucose.
AIM: We aimed to explain anti-diabetic attributes, traditional uses, and potential chemical constituents of desert plant retama.
RESULTS: Numerous previous studies support the use of plant derived bioactive substances for human and animal disease therapy and reinforce their importance as a potential source of novel drug candidates. In this line a flowering bush, belong to the genus “Retama” (Fabaceae) are in use of conventional remedy in the Mediterranean basin for various diseases including DM. This potential plant genus has a great medical and socioeconomic importance and provides crucial evidence for its anti-diabetic therapeutic potential. The present review collected various documented information using the following searching engines such as PubMed, Science direct, and Google scholar. We limit our search only to English written documents for the last few decades until date. For data mining, the following MeSH words used in the databases: Retama, diabetes, phytoconstituents, pharmacological potential, anti-diabetic, insulin, in vivo, and in vitro.
CONCLUSION: The outcome of this review may set new prospects for the DM patients, along with other standard medication and provide an overall insight to the well-being at the regional and global level.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
IDF. IDF Diabetes Atlas. 10th ed. Belgium: IDF; 2022. Available from: https://diabetesatlas.org [Last accessed on 2021 Nov 08].
Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-321. DOI: https://doi.org/10.1016/j.diabres.2011.10.029
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843 PMid31518657 DOI: https://doi.org/10.1016/j.diabres.2019.107843
Florencia A, Alex B, Ho CN, Gisela D, Sheree D, Trisha D, et al. IDF Diabetes Atlas. 6th ed. Basel, Switzerland: International Diabetes Federation; 2013.
Orazumbekova B, Issanov A, Atageldiyeva K, Berkinbayev S, Junusbekova G, Danyarova L, et al. Prevalence of impaired fasting glucose and Type 2 diabetes in kazakhstan: Findings from large study. Front. Public Health. 2022;10:810153. https://doi.org/10.3389/fpubh.2022.810153 PMid35284393 DOI: https://doi.org/10.3389/fpubh.2022.810153
El-Kebbi IM, Bidikian NH, Hneiny L, Nasrallah MP. Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action. World J Diabetes. 2021;12(9):1401-1425. https://doi.org/10.4239/wjd.v12.i9.1401 PMid: 34630897 DOI: https://doi.org/10.4239/wjd.v12.i9.1401
American Diabetes Association Professional Practice Committee. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl1):S13-28. https://doi.org/10.2337/dc19-S002 PMid34964875 DOI: https://doi.org/10.2337/dc19-S002
Díaz-Apodaca BA, Ebrahim S, McCormack V, de Cosío FG, Ruiz-Holguín R. Prevalence of Type 2 diabetes and impaired fasting glucose: Cross-sectional study of multiethnic adult population at the United States-Mexico border. Rev Panam Salud Publica. 2010;28(3):174-81. https://doi.org/10.1590/s1020-49892010000900007 PMid20963264 DOI: https://doi.org/10.1590/S1020-49892010000900007
Beltowski J. Adiponectin and resistin-new hormones of white adipose tissue. Med Sci Mon. 2003;9(2):RA55-61. PMid12601307
Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171-6. https://doi.org/10.1172/JCI10583 PMid10903330 DOI: https://doi.org/10.1172/JCI10583
Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307-12. https://doi.org10.1038/35053000 PMid11201732 DOI: https://doi.org/10.1038/35053000
Matos SL, Paula H, Pedrosa ML, Santos RC, Oliveira EL, Chianca DA, et al. Dietary models for inducing hypercholesterolemia in rats. Brazilian Arch Biol Technol. 2005;48(6818):203-9. https://doi.org/10.1038/35053000 PMid11201732 DOI: https://doi.org/10.1590/S1516-89132005000200006
Asashina M, Sato M, Imaizumi K. Genetic analysis of diet-induced hypercholesterolemia in exogenously hypercholesterolemic (ExHC) rats. J Lipid Res. 2005;46(10):2289-94. https://doi.org/10.1194/jlr.M500257-JLR200 PMid16061941 DOI: https://doi.org/10.1194/jlr.M500257-JLR200
Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:71. https://doi.org/10.3389/fendo.2013.00071 PMid23781214 DOI: https://doi.org/10.3389/fendo.2013.00071
Kumar A, Suresh K. Diabetes mellitus: A stitch in time saves nine early diagnosis and management minimizes complications-a case study. Glob J Obes Diabetes Metab Syndr. 2021;8(2):14-7. https://doi.org/10.17352/2455-8583.000052 DOI: https://doi.org/10.17352/2455-8583.000052
Stumvoll M, Goldstein BJ, Van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333-46. https://doi.org/10.1016/S0140-6736(05)61032-X PMid15823385 DOI: https://doi.org/10.1016/S0140-6736(05)61032-X
Wild S, Roglic G, Green A, Sicree R and King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53. https://doi.org/10.2337/diacare.27.5.1047 PMid15111519 DOI: https://doi.org/10.2337/diacare.27.5.1047
Sicree R, Shaw J, Zimmet P. Diabetes and impaired glucose tolerance. In: Gan D, editor. Diabetes Atlas. International Diabetes Federation. 3rd ed. Belgium: International Diabetes Federation; 2006. p. 15-103.
Mohan V, Sandeep S, Deepa R. Epidemiology of Type 2 diabetes: Indian scenario. Indian J Med Res. 2007;125(3):225-30. PMid17496352
Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013;4(6):270-81. https://doi.org/10.4239/wjd.v4.i6.270 PMid24379917 DOI: https://doi.org/10.4239/wjd.v4.i6.270
Chentli F, Azzoug S, Mahgoun S. Diabetes mellitus in elderly. Indian J Endocrinol Metab. 2015;19(6):744-52. https://doi.org/10.4103/2230-8210.167553 PMid26693423 DOI: https://doi.org/10.4103/2230-8210.167553
Seyed MA, Ayesha S. Modern phytomedicine in treating diabetic foot ulcer: Progress and opportunities. In: Zubair M, Ahmad J, Malik A, Talluri MR. editors. Diabetic Foot Ulcer. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-7639-3_18 DOI: https://doi.org/10.1007/978-981-15-7639-3_18
Ramachandran A, Snehalatha C, Viswanathan V. Burden of Type 2 diabetes and its complications-the Indian scenario. Current Sci. 2002;83(12):1472-76.
Ramachandran A. Socioeconomic burden of diabetes in India. J Assoc Physicians India. 2007;Suppl 55:9-12. PMid17927005
Naeem Z (2015). Burden of diabetes mellitus in Saudi Arabia. Int J Health Sci (Qassim). 2015;9(3):V-VI. https://doi.org/10.12816/0024690 PMid26609301 DOI: https://doi.org/10.12816/0024690
Huizinga MM, Rothman RL. Addressing the diabetes pandemic: A comprehensive approach. Indian J Med Res. 2006;124:481-4. PMid17213514
Teucher B, Tjonneland A, Tumino R, Van der A DL, Wark PA, McCarthy MI, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: The EPIC-InterAct study. Diabetologia. 2013;56(1):60-9. https://doi.org/10.1007/s00125-012-2715-x PMid23052052 DOI: https://doi.org/10.1007/s00125-012-2715-x
Wu Y, Ding Y, Tanaka Y and Zhang W. Risk factors contributing to Type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200. https://doi.org/10.7150/ijms.10001 PMid25249787 DOI: https://doi.org/10.7150/ijms.10001
Rizzoni D, Porteri E, Guelfi D. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103(9):1238-44. https://doi.org/10.1161/01.cir.103.9.1238 PMid11238267 DOI: https://doi.org/10.1161/01.CIR.103.9.1238
Chaudhury A, Duvoor C, Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: Implications for Type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6. https://doi.org/10.3389/fendo.2017.00006 PMid28167928 DOI: https://doi.org/10.3389/fendo.2017.00006
Salehi B, Ata A, Kumar NV, Sharopov F, Ramírez-Alarcón K, Ruiz- Ortega A. Antidiabetic potential of medicinal plants and their active components. 2019;9(10):551. https://doi.org/10.3390/biom9100551 PMid31575072 DOI: https://doi.org/10.3390/biom9100551
Sai KS, Nagarajan S. Blood glucose lowering effect of the leaves of Tinospora cordifolia and Sauropus androgynus in diabetic subjects. J Nat Remedies. 2002;2(1):28-32.
Singh S, Gupta SK, Sabir G, Gupta MK, Seth PK. A database for anti-diabetic plants with clinical/experimental trials. Bioinformation. 2009;4(6):263-8. https://doi.org/10.6026/97320630004263 PMid20975921 DOI: https://doi.org/10.6026/97320630004263
Seyed MA. A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of human diseases. Biocatal Agric Biotechnol. 2019;17:529-37. https://doi.org/10.1016/j.bcab.2019.01.008 DOI: https://doi.org/10.1016/j.bcab.2019.01.008
Atanasov AG, Zotchev SB, Dirsch VM. International natural product Sciences Taskforce, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200-16. DOI: https://doi.org/10.1038/s41573-020-00114-z
Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y. The neuroprotective attribution of Ocimum basilicum: A review on the prevention and management of neurodegenerative disorders. 2021;7:1-14. https://doi.org/10.1186/s43094-021-00295-3 DOI: https://doi.org/10.1186/s43094-021-00295-3
Ali-Seyed M, Vijayaraghavan K. Nutraceuticals for wound healing: A special focus on Chromolaena odorata as guardian of health with broad spectrum of biological activities. Nutraceuticals Vet Med. 2019;541-62. DOI: https://doi.org/10.1007/978-3-030-04624-8_36
Magi E, Sahk M. Use of herbal medicine principle in local conditions. Agraarteadus. 2003;14(3):172-8.
Cosge B, Turker A, Ipek I, Gurbuz B. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand-Mazz) Ietswaart, an endemic species to Turkey. Molecules. 2009;14(5):1702-12. https://doi.org/10.3390/molecules14051702 PMid19471191 DOI: https://doi.org/10.3390/molecules14051702
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res. 2021;35(1):223-45. https://doi.org/10.1002/ptr.6821 PMid32909364 DOI: https://doi.org/10.1002/ptr.6821
Barrachina VL, Chacón RM, Salazar NR, Sanchis BV, Murillo PJ and Puig PA, González HM, Bermejo PM. The role of natural products on diabetes mellitus treatment: A systematic review of randomized controlled trials. Pharmaceutics. 2022;2;14(1):101. https://doi.org/10.3390/pharmaceutics14010101 PMid35056997 DOI: https://doi.org/10.3390/pharmaceutics14010101
Mansukhani R, Volino L, Varghese R. Natural products for the treatment of Type 2 diabetes mellitus. Pharmacol Pharm. 2014;5(5):487-503. https//doi.org/10.4236/pp.2014.55059 DOI: https://doi.org/10.4236/pp.2014.55059
Wickramasinghe AS, Kalansuriya P, Attanayake AP. Herbal medicines targeting the improved β-cell functions and β-cell regeneration for the management of diabetes mellitus. Evid Based Complement Alternat Med. 2021;2021:2920530. https://doi.org/10.1155/2021/2920530 PMid34335803 DOI: https://doi.org/10.1155/2021/2920530
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From Herbal medicine to modern drug discovery. Biology (Basel). 2020;9(9):252. https://doi.org/10.3390/biology9090252 PMid32872226 DOI: https://doi.org/10.3390/biology9090252
Maghrani M, Lemhadri A, Jouad H, Michel JB, Eddouks M. Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol. 2003;87(1):21-5. https://doi.org/10.1016/s0378-8741(03)00104-1 PMid12787950 DOI: https://doi.org/10.1016/S0378-8741(03)00104-1
Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M. Living under a ‘‘dormant” canopy: A molecular acclimation mechanism of the desert plant Retama raetam. Plant J. 2001;25(4):407-16. https://doi.org/10.1046/j.1365-313x.2001.00975.x PMid11260497
Al-Nozha MM, Al-Maatouq MA, Al-Mazrou YY, Al-Harthi SS, Arafah MR, Khalil MZ, et al. Diabetes mellitus in Saudi Arabia. Saudi Med J. 2004;25(11):1603-10. https://doi.org/10.1046/j.1365-313x.2001.00975.x PMid11260497 DOI: https://doi.org/10.1046/j.1365-313x.2001.00975.x
Benhouhou S. A guide to medicinal plants in North Africa. Gràficas La Paz ed. Malaga, Spain: IUCN Centre for Mediterranean Cooperation; 2005.
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062. https://doi.org/10.1093/database/baaa062 PMid32761142 DOI: https://doi.org/10.1093/database/baaa062
POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew; 2020. Available from: https://www.plantsoftheworldonline.org [Last accessed on 2023 May 30].
Al-Sharari N, Bakhashwain AS, Elfeel AA. Profiling and importance of underutilized neglected species of hyper arid climate of Saudi Arabia (Retama raetam-Retem): A review. Life Sci J 2020;17(7):35-42.
El Beyrouthy M, Arnold N, Delelis-Dusollier NA, Dupont F. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J Ethnopharm. 2008;120(3):315-34. https://doi.org/10.1016/j.jep.2008.08.024 PMid18809483 DOI: https://doi.org/10.1016/j.jep.2008.08.024
El-Hilaly J, Hmammouchi M, Lyoussi B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J Ethnopharmcol. 2003;86(2-3):149-58. https://doi.org/10.1016/s0378-8741(03)00012-6 PMid12738079 DOI: https://doi.org/10.1016/S0378-8741(03)00012-6
Maghrani M, Zeggwagh NA, Haloui M, Eddouks M. Acute diuretic effect of aqueous extract of Retama raetam in normal rats. J Ethnopharmacol. 2005a;99(1):31-5. https://doi.org/10.1016/j.jep.2005.01.045 PMid15848016 DOI: https://doi.org/10.1016/j.jep.2005.01.045
Eddouks M, Maghrani M, Louedec L, Haloui M, Michel JB. Antihypertensive activity of the aqueous extract of Retama raetam Forssk. Leaves in spontaneously hypertensive rats. J Herb Pharmacother. 2007;7(2):65-77. https://doi.org/10.1300/j157v07n02_05 PMid18285308 DOI: https://doi.org/10.1080/J157v07n02_05
Hayet E, Samia A, Patrick G, Ali M, Maha M, Laurent G, et al. Antimicrobial and cytotoxic activity of Marrubium alysson and Retama raetam grown in Tunisia. Pak J Biol Sci. 2007;10(10):1759-62. https://doi.org/0.3923/pjbs.2007.1759.1762 PMid19086533 DOI: https://doi.org/10.3923/pjbs.2007.1759.1762
Koriem KM, Farraqm AR, Badawy AA, El-Toumy SA. Role of some Egyptian medicinal plants against liver and kidney toxicity induced by cadmium chloride. Toxicol Mech Methods. 2009;19(8):524-34. https://doi.org/10.1080/15376510903121145 PMid19817661 DOI: https://doi.org/10.1080/15376510903121145
Algandaby MM, Alghamdi HA, Ashour OM, Abdel-Naim AB, Ghareib SA, Abdel-Sattar EA, et al. Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin- induced diabetic rats. Food Chem Toxicol. 2010;48(8-9):2448-53. https://doi.org/10.1016/j.fct.2010.06.010 PMid20538037 DOI: https://doi.org/10.1016/j.fct.2010.06.010
Edziri H, Mastouri M, Cheraif I, Aouni M. Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) Webb from Tunisia. Nat Prod Res. 2010;24(9):789-96. https://doi.org/10.1080/14786410802529190 PMid20461625 DOI: https://doi.org/10.1080/14786410802529190
Abu-Odeh AM, Talib WH. Middle east medicinal plants in the treatment of diabetes: A review. Molecules. 2021;26(3):742. https://doi.org/10.3390/molecules26030742 PMid33572627 DOI: https://doi.org/10.3390/molecules26030742
Gushash AS. Raa plants. Plants in the Mountains of Sarat and Hejaz. Vol. 1. Jeddah, Saudi Arabia: Sarawat Publishing Co.; 2006. p. 363-85.
Boussahel S, Cacciola F, Dahamna S, Mondello L, Saija A, Cimino F, et al. Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat Prod Res. 2018;32(16):1911-9. https://doi.org/10.1080/14786419.20 17.1356835 PMid28738692
Maghrani M, Lemhadri A, Zeggwagh NA, El Amraoui A, Haloui M, Jouad H, et al. Effect of Retama raetam on lipid metabolism in normal and recent-onset diabetic rats. J Ethnopharmacol. 2004;90(2-3):323-9. https://doi.org/10.1016/j.jep.2003.10.008 PMid15013197 DOI: https://doi.org/10.1016/j.jep.2003.10.008
Conforti F, Statti G, Tundis R, Loizzo MR, Bonesi M, Menichini F, et al. Antioxidant and cytotoxic activities of Retama raetam subsp. Gussonei. Phytother Res. 2004;18(7):585-7. https://doi.org/10.1002/ptr.1496 PMid15305322 DOI: https://doi.org/10.1002/ptr.1496
Khalifa AA, Hanan SA, Wesam AK, Fouzy A, Salem ME. Qualitative and quantitative phytochemical analysis and antimicrobial activity of “retama” extract grown in Zliten Libya. Int J Med Sci Clin Invent. 2017;4(4):2861-6. https://doi.org/10.18535/ijmsci/v4i4.11 DOI: https://doi.org/10.18535/ijmsci/v4i4.11
El Hamdani N, Fdil R, Tourabi M, Jama C, Bentiss F. Alkaloids extract of Retama monosperma (L.) Boiss. Seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1M HCl solution: Electrochemical and surface studies. Appl Surf Sci. 2015;357(Part A):1294-305. https://doi.org/10.1016/j.apsusc.2015.09.159 DOI: https://doi.org/10.1016/j.apsusc.2015.09.159
Sadik K, El Hamdani N, Hachim ME, Byadi S, Bahadur I, Aboulmouhajir A. Towards a theoretical understanding of alkaloid-extract Cytisine derivatives of Retama monosperma (L.) Boiss. Seeds, as eco-friendly inhibitor for carbon steel corrosion in acidic 1M HCl solution. J Comput Biophys Chem. 2020;19(5):2050013. https://doi.org/10.1142/S0219633620500133 DOI: https://doi.org/10.1142/S0219633620500133
Fdil R, El Hamdani N, El Kihel A, Sraidi K. Distribution of alkaloids in aerial parts of Retama monosperma (L.) Boiss. from Morocco. Ann Toxicol Anal. 2012; 139-43. https://doi.org/10.1051/ata/2012016 DOI: https://doi.org/10.1051/ata/2012016
Belayachi L, Aceves-Luquero C, Merghoub N, Bakri Y, de Mattos SF, Amzazi S, et al. Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway- dependent apoptosis in Jurkat cells. BMC Complement Altern Med. 2014;14:38. https://doi.org/10.1186/1472-6882-14-38 PMid24460687 DOI: https://doi.org/10.1186/1472-6882-14-38
Hammouche-Mokrane N, Le´on-Gonz´alez AJ, Navarro I, Boulila F, Benallaoua S, Martín-Cordero C. Phytochemical profile and antibacterial activity of Retama raetam and R. Sphaerocarpa cladodes from Algeria. Nat Prod Commun. 2017; 12(12): 1857-1860. https://doi.org/10.1177/1934578X1701201211 DOI: https://doi.org/10.1177/1934578X1701201211
Lopez PM, de la Mora PG, Wysocka W, Maiztegui B, Alzugaray E, Del Zotto H, et al. Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol. 2004;504(1-2):139-42. https://doi.org/10.1016/j.ejphar.2004.09.008 PMid15507230 DOI: https://doi.org/10.1016/j.ejphar.2004.09.008
Kassem ME, Mosharrafa SA, Saleh NA, Wahab SM. Flavonoids of Retama raetam, and in vitro antitumor screening of two isoflavones. Egyptian J Pharmaceutical Sci. 2006;47:1-11.
González-Mauraza NH, León-González AJ, Espartero JL, Gallego-Fernández JB, Sánchez-Hidalgo M, Martin-Cordero C. Isolation and quantification of pinitol, a bioactive cyclitol, in Retama spp. Nat Prod Commun. 2016;11(3):405-6. PMid27169192 DOI: https://doi.org/10.1177/1934578X1601100321
Xu WH, Al-Rehaily AJ, Yousaf M, Ahmad MS, Khan SI, Khan IA. Two new flavonoids from Retama raetam. Helv Chim Acta. 2015;98(4):561-8. https://doi.org/10.1002/hlca.201400315 DOI: https://doi.org/10.1002/hlca.201400315
Boussahel S, Cacciola F, Dahamna S, Mondello L, Saija A, Cimino F, et al. Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat Prod Res. 2018;32(16):1911-19. https://doi.org/10.1080/14786419.2017.1356835 PMid28738692 DOI: https://doi.org/10.1080/14786419.2017.1356835
Zefzoufi M, Fdil R, Bouamama H, Gadhi C, Katakura Y, Mouzdahir A, et al. Effect of extracts and isolated compounds derived from Retama monosperma (L.) Boiss. On anti-aging gene expression in human keratinocytes and antioxidant activity. J. Ethnopharmacol. 2021;280:114451. https://doi.org/10.1016/j.jep.2021.114451 PMid34314805 DOI: https://doi.org/10.1016/j.jep.2021.114451
Derhali S, El Hamdani N, Fdil R, Mouzdahir A, Sraidi K. Chemical composition of essential oils of Retama monosperma (L.) Boiss. from Morocco. Res J Pharmaceut Biol Chem Sci. 2016;7(4):2102-6.
Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev. 2021;17(4):437-56. https://doi.org/10.2174/1573399816666201103143225 PMid33143632 DOI: https://doi.org/10.2174/1573399816666201103143225
Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe (A Mini-Review). Pharmaceuticals (Basel). 2022;15(1):65. https://doi.org/10.3390/ph15010065 PMid35056122 DOI: https://doi.org/10.3390/ph15010065
Gupta R, Rastogi P, Sarna M, Sharma SK. Body-mass index, waist-size, waist-hip ratio and cardiovascular risk factors in urban subejcts. J Assoc Physicians India. 2007;55:621-7. PMid18051732
Nasri H, Shirzad H, Baradaran A, Rafieian-Kopaei M. Antioxidant plants and diabetes mellitus. J Res Med Sci. 2015;20(5):491-502. https://doi.org/10.4103/1735-1995.163977 PMid26487879 DOI: https://doi.org/10.4103/1735-1995.163977
Mancha-Ramirez AM, Slaga TJ. Ursolic acid and chronic disease: An overview of ua’s effects on prevention and treatment of obesity and cancer. In: Gupta SC, Prasad S, Aggarwal BB, editors. Advances in Experimental Medicine and Biology. Anti- Inflammatory Nutraceuticals and Chronic Diseases. Vol. 928. Springer International Publishing: Cham, Switzerland; 2016. DOI: https://doi.org/10.1007/978-3-319-41334-1_4
Alam S, Sarker MM, Sultana TN, Chowdhury MN, Rashid MA, Chaity NI, et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front Endocrinol (Lausanne). 2022;13:800714. https://doi.org/10.3389/fendo.2022.800714 PMid35282429 DOI: https://doi.org/10.3389/fendo.2022.800714
Prabhakar KP, Doble K. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev. 2008;4(4):291-308. https://doi.org/10.2174/157339908786241124 PMid18991598 DOI: https://doi.org/10.2174/157339908786241124
Isman BM. Plant essential oils for pest and disease management. Crop Protec J. 2000;19:603-8. https://doi. org/10.1016/S0261-2194(00)00079-X DOI: https://doi.org/10.1016/S0261-2194(00)00079-X
Liu YJ, Zhang KQ. Antimicrobial activities of selected Cyathus species. Mycopathologia. 2004;157(2):185-9. https://doi. org/10.1023/b:myco.0000020598.91469.d1 PMid15119855 DOI: https://doi.org/10.1023/B:MYCO.0000020598.91469.d1
Mares D, Romagnoli C, Tosi B, Andreotti E, Chillemi G, Poli F. Chicory extracts from Cichorium intybus L. as potential antifungals. Mycopathologia. 2005;160(1):85-92. https://doi.org/10.1007/s11046-004-6635-2 PMid16160773 DOI: https://doi.org/10.1007/s11046-004-6635-2
Soylu EM, Soylu S, Kurt S. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia. 2006;161(2):119-28. https://doi.org/10.1007/s11046-005-0206-z PMid16463095 DOI: https://doi.org/10.1007/s11046-005-0206-z
Yazaki K, Sugiyama A, Morita M, Shitan N. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev. 2008;7:513-24. https://doi.org/10.1007/s11101-007-9079-8 DOI: https://doi.org/10.1007/s11101-007-9079-8
Akhtar Y, Rankin K, Isman M. Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). Phytochem Rev. 2008;7:77-88. DOI: https://doi.org/10.1007/s11101-006-9048-7
Naili M, Alghazeer R, Saleh, N, Al-Najjar A. Evaluation of antibacterial and antioxidant activities of Artemisia campestris (Astraceae) and Ziziphus lotus (Rhamnacea). Arabian J Chem. 2010;3:73-134. https://doi.org/10.1016/j.arabjc.2010.02.002 DOI: https://doi.org/10.1016/j.arabjc.2010.02.002
Suhaj M. Spice antioxidants isolation and their antiradical activity: A review. J Food Composition and Anal. 2006;19(6-7):531-7. https://doi.org/10.1016/j.jfca.2004.11.005 DOI: https://doi.org/10.1016/j.jfca.2004.11.005
Tsuchia H, Sato M, Miyazaki S, Fujiwara S, Tanaka T, Lumina M. Comparative study on the antibacterial activity of phytochemical flavones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 1999;50:7-34. DOI: https://doi.org/10.1016/0378-8741(96)85514-0
Djeddi S, Karioti A, Yannakopoulou E, Papadopoulos K, Chatter R, Skaltsa H. Analgesic and antioxidant activities of Algerian Retama raetam (Forssk.) webb and berthel extracts. Records Natural Prod. 2013;7:169-76.
Bremner P, Rivera D, Calzado, MA, Obon C, Inocencio C, Beckwith C, et al. Assessing medicinal plants from South- Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J Ethnopharmacol. 2009;124(2):295-305. https://doi.org/10.1016/j.jep.2009.04.035 PMid19397975 DOI: https://doi.org/10.1016/j.jep.2009.04.035
Burt S. Essential oils: Their antibacterial properties and potential applications in foods. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid15246235 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Bobkiewicz-Kozłowska T, Dworacka M, Kuczynski S, Abramczyk M, Kolanos R, Wysocka W, et al. Hypoglycaemic effect of quinolizidine alkaloids-lupanine and 2-thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;565(1-3):240-4. https://doi.org/10.1016/j.ejphar.2007.02.032 PMid17379208 DOI: https://doi.org/10.1016/j.ejphar.2007.02.032
Ghani U, Nur-e-Alam M, Yousef M, Ul-Haq Z, Noman OM, Al-Rehaily AJ. Natural flavonoid α-glucosidase inhibitors from Retama Raetam: Enzyme inhibition and molecular docking reveal important interactions with the enzyme active site. Bioorg Chem. 2019;87:736-42. https://doi.org/10.1016/j.bioorg.2019.03.079 PMid30954838 DOI: https://doi.org/10.1016/j.bioorg.2019.03.079
Awen BZ, Unnithan CR, Ravi S, Kermagy A, Sasikumar JM, Khrbash AS, et al. Essential oils of Retama raetam from Libya: Chemical composition and antimicrobial activity. Nat Prod Res. 2011;25(9):927-33. https://doi.org/10.1080/14786419.2010.503612 PMid21547844 DOI: https://doi.org/10.1080/14786419.2010.503612
Mariem M, Hanen F, Inès FJ, Mejdi S, Riadh K. Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. South Afr J Bot. 2014;94:114-21. https://doi.org/10.1016/j.sajb.2014.06.010 DOI: https://doi.org/10.1016/j.sajb.2014.06.010
Rauter AP, Martins A, Lopes R, Ferreira J, Serralheiro LM, Araujo ME, et al. Bioactivity studies and chemical profile of the antidiabetic plant Genista tenera. J Ethnopharmacol. 2009;122(2):384-93. https://doi.org/10.1016/j.jep.2008.10.011 PMid19101619 DOI: https://doi.org/10.1016/j.jep.2008.10.011
Helmi R, el-Mahdy SA, Ali H, Khayyal MA. Preliminary report on the hypoglycemic effect of Trifolium alexandrinum and Lupinus termis in animal and man. J Egypt Med Assoc. 1969;52(7):538-51. PMid5365916
Pereira FC, Ouedraogo R, Lebrun P, Barbosa RM, Cunha AP, Santos RM, et al. Insulinotropic action of white lupine seeds (Lupinus albus L.): Effects on ion fluxes and insulin secretion from isolated pancreatic islets. Biomed Res. 2001;22(2):23. DOI: https://doi.org/10.2220/biomedres.22.103
Maghrani M, Michel JB, Eddouks M. Hypoglycaemic activity of Retama raetam in rats. Phytother. Res. 2005b;19(12):125-8. https://doi.org/10.1002/ptr.1627 PMid15852497 DOI: https://doi.org/10.1002/ptr.1627
Nur-e-Alam M, Yousaf M, Parveen I, Hafizur RM, Ghani U, Ahmed S, et al. New flavonoids from the Saudi Arabian plant: Retama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Organic and Biomol Chem. 2019;17(5):1266-76. https://doi.org/10.1039/C8OB02755B 106. Saada M, Wasli H, Jallali I, Kboubi R, Girard-Lalancette K Mshvildadze V, et al. Bio-guided fractionation of Retama raetam (Forssk.) webb and berthel polar extracts. Molecules. 2021;26(19):5800. https://doi.org/10.3390/molecules261958000 PMid34641345 DOI: https://doi.org/10.3390/molecules26195800
León-González AJ, Navarro I, Acero N, Martín-Cordero C. Genus Retama: A review on traditional uses, phytochemistry, and pharmacological activities. Phytochem Rev. 2018;17:701-31. https://doi.org/10.1007/s11101-018-9555-3 DOI: https://doi.org/10.1007/s11101-018-9555-3
Rao G. Insulin resistance syndrome. Am Fam Physician. 2001;63(6):1159-63, 1165-6. PMid11277552
Fortis-Barrera ML, Alarcón-Aguilar FJ, Becerril-García A, Flores- Sáenz JL, Almanza-Pérez JC, García-Lorenzana M, et al. Mechanism of the hypoglycemic activity and hepatoprotective effect of the aqueous extract of Cecropia obtusifolia Bertol. J Med Food. 2020;23(7):783-92. https://doi.org10.1089/jmf.2019.0126 PMid31721634 DOI: https://doi.org/10.1089/jmf.2019.0126
Pan D, Mao C, Wang YX. Suppression of gluconeogenic gene expression by LSD1-mediated histone demethylation. PLoS One. 2013;8(6):e66294. https://doi.org/10.1371/journal.pone.0066294 PMid23755305 DOI: https://doi.org/10.1371/journal.pone.0066294
Van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362(Pt 3):513-32. https://doi.org/10.1042/0264-6021:3620513 PMid11879177 DOI: https://doi.org/10.1042/bj3620513
Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic-induced alterations in hepatic glucose and lipid metabolism: The role of Type 1 and Type 2 diabetes mellitus (Review). Mol Med Rep. 2020;22(2):603-11. https://doi.org/10.3892/mmr.2020.11175 PMid32468027 DOI: https://doi.org/10.3892/mmr.2020.11175
Downloads
Published
How to Cite
License
Copyright (c) 2023 Mahmoud Elodemi, Ayesha Siddiqua, Mohaamed Ali Seyed (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0