Quantitative SARS-CoV-2 Spike Receptor-Binding Domain on Vaccinated Individuals Compared to Natural Infection

Authors

  • Maria Yasintha Lihawa Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia https://orcid.org/0009-0008-9546-9819
  • Eulis Alwi Datau Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
  • Eko Surachmanto Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
  • Juwita Soekarno Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia
  • Budi Tulaka Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital, Manado, Indonesia; Department of Clinical Pathology, Faculty of Medicine, Tadulako University, Palu, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2023.11611

Keywords:

Coronavirus disease-19, Receptor-binding domain, IgG, Vaccine, Fungal infection in hematological malignancies

Abstract

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic has been going on for more than 2 years, with various treatments and diagnostic methods available. One of the most prized structures, the receptor-binding domain (RBD) of the spike protein in severe acute respiratory syndrome coronavirus 2 has long been thoroughly researched for its function and becoming the target for  various diagnostic methods and treatments, including a vaccine. The spike-RBD (sRBD) antibody count might be the parameter for antibody response in vaccinated and infected individuals. However, no direct comparison is made.

AIM: The study aims to compare the sRBD antibody count in the naturally infected individuals to the vaccinated ones.

METHODS: We conducted a cross-sectional study with 49 participants of the infected patients, and vaccinated individuals were included in this study from Prof. Dr. R. D. Kandou Hospital, Manado. The participants underwent a COVID-19 antibody test, using enhanced  “Chemiluminescence” Immuno assay to analyze the anti-sRBD IgG quantitatively. Results were then analyzed and compared using IBM Statistical Package for Social Sciences ver 25.0 with Mann−Whitney non-parametric test.

RESULTS: The study shows a higher median antibody count in the naturally infected group compared to the vaccinated group (132.70 vs. 11.95 U/mL; p < 0.001). Further studies on the topic should be conducted to determine the comparison on a larger scale.

CONCLUSION: The s-RBD antibody titer is significantly higher in naturally infected patients than in vaccinated individuals.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

WHO Coronavirus (COVID-19) Dashboard WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available from: https://covid19.who.int [Last accessed on 2022 Nov 23].

Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947-53. https://doi.org/10.1038/s41562-021-01122-8 PMid:33972767 DOI: https://doi.org/10.1038/s41562-021-01122-8

Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS- CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:587269. https://doi.org/10.3389/fcimb.2020.587269 PMid:33324574 DOI: https://doi.org/10.3389/fcimb.2020.587269

Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. https://doi.org/10.1038/s41564-020-0688-y PMid:32094589 DOI: https://doi.org/10.1038/s41564-020-0688-y

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry using human ACE2. Cell. 2020;181(4):894-904.e. https://doi.org/10.1016/j.cell.2020.03.045 PMid:32275855 DOI: https://doi.org/10.1016/j.cell.2020.03.045

Hardenbrook NJ, Zhang P. A structural view of the SARS-CoV-2 virus and its assembly. Curr Opin Virol. 2022;52:123-34. https://doi.org/10.1016/j.coviro.2021.11.011 PMid:34915287 DOI: https://doi.org/10.1016/j.coviro.2021.11.011

Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 2021;19(11):685-700. https://doi.org/10.1038/s41579-021-00630-8 PMid:34535791 DOI: https://doi.org/10.1038/s41579-021-00630-8

Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9. https://doi.org/10.1038/s41401-020-0485-4 PMid:32747721 DOI: https://doi.org/10.1038/s41401-020-0485-4

Hajazadeh F, Khanizadeh S, Khodadadi H, Mokhayeri Y, Ajorloo M, Malekshahi A, et al. SARS-COV-2 RBD (Receptor binding domain) mutations and variants (A sectional-analytical study). Microb Pathog. 2022;168:105595. https://doi.org/10.1016/j.micpath.2022.105595 PMid:35597364 DOI: https://doi.org/10.1016/j.micpath.2022.105595

Yang L, Li J, Guo S, Hou C, Liao C, Shi L, et al. SARS-CoV-2 variants, RBD mutations, binding affinity, and antibody escape. Int J Mol Sci. 2021;22(22):12114. https://doi.org/10.3390/ijms222212114 PMid:34829998 DOI: https://doi.org/10.3390/ijms222212114

Accelerated Emergency Use Authorization (EUA) Summary SARS-COV-2 RBD IGG for Antibody Detection (Emory Medical Laboratories). United States: FDA; 2022. p. 1-7.

Indenbaum V, Koren R, Katz-Likvornik S, Yitzchaki M, Halpern O, Regev-Yochay G, et al. Testing IgG antibodies against the RBD of SARS-CoV-2 is sufficient and necessary for COVID-19 diagnosis. PLoS One. 2020;15(11):e0241164. https://doi.org/10.1371/journal.pone.0241164 PMid:33227020 DOI: https://doi.org/10.1371/journal.pone.0241164

West R, Kobokovich A, Connell N, Gronvall GK. COVID-19 antibody tests: A valuable public health tool with limited relevance to individuals. Trends Microbiol. 2021;29(3):214-23. https://doi.org/10.1016/j.tim.2020.11.002 PMid:33234439 DOI: https://doi.org/10.1016/j.tim.2020.11.002

Ravi AB, Singh VP, Chandran R, Venugopal K, Haridas K, Kavitha R. COVID-19 antibody tests: An overview. J Pharm Bioallied Sci. 2021;13(Suppl 1):S48-51. https://doi.org/10.4103/jpbs.JPBS_786_20 PMid:34447041 DOI: https://doi.org/10.4103/jpbs.JPBS_786_20

Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann AJ, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020;5(48):eabc8413. https://doi.org/10.1126/sciimmunol.abc8413 PMid:32527802 DOI: https://doi.org/10.1126/sciimmunol.abc8413

Ho M. Perspectives on the development of neutralizing antibodies against SARS-CoV-2. Antib Ther. 2020;3(2):109-14. https://doi.org/10.1093/abt/tbaa009 PMid:32566896 DOI: https://doi.org/10.1093/abt/tbaa009

Min L, Sun Q. Antibodies and vaccines target RBD of SARS-CoV-2. Front Mol Biosci. 2021;8: 671633. https://doi.org/10.3389/fmolb.2021.671633 PMid:33968996 DOI: https://doi.org/10.3389/fmolb.2021.671633

Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021;6(1):128. https://doi.org/10.1038/s41541-021-00393-6 PMid:34711846 DOI: https://doi.org/10.1038/s41541-021-00393-6

Lo Sasso B, Giglio RV, Vidali M, Scazzone C, Bivona G, Gambino CM, et al. Evaluation of anti-SARS-Cov-2 S-RBD IgG antibodies after COVID-19 mRNA BNT162b2 vaccine. Diagnostics (Basel). 2021;11(7):1135. https://doi.org/10.3390/diagnostics11071135 PMid:34206567 DOI: https://doi.org/10.3390/diagnostics11071135

Kolesova O, Tomassetti F, Cerini P, Finucci D, Turchetti G, Capogreco F, et al. Evaluation of ECLIA antigen detection tests as screening methods for COVID-19 in comparison with molecular analysis. Ir J Med Sci. 2022;191(5):2213-7. https://doi.org/10.1007/s11845-021-02863-1 PMid:34850319 DOI: https://doi.org/10.1007/s11845-021-02863-1

Karachaliou M, Moncunill G, Espinosa A, Castaño-Vinyals G, Rubio R, Vidal M, et al. SARS-CoV-2 infection, vaccination, and antibody response trajectories in adults: A cohort study in Catalonia. BMC Med. 2022;20(1):347. https://doi.org/10.1186/ s12916-022-02547-2 PMid:36109713 DOI: https://doi.org/10.1186/s12916-022-02547-2

Lo Sasso B, Agnello L, Giglio RV, Gambino CM, Ciaccio AM, Vidali M, et al. Longitudinal analysis of anti-SARS-CoV-2 S-RBD IgG antibodies before and after the third dose of the BNT162b2 vaccine. Sci Rep. 2022;12(1):8679. https://doi.org/10.1038/s41598-022-12750-z PMid:35606426 DOI: https://doi.org/10.1038/s41598-022-12750-z

Roltgen K, Nielsen SC, Arunachalam PS, Yang F, Hoh RA, Wirz OF, et al. mRNA vaccination compared to infection elicits an IgG-predominant response with greater SARS-CoV-2 specificity and similar decrease in variant spike recognition. medRxiv. 2021;2021:???. https://doi.org/10.1101/2021.04.05.21254952 PMid:33851181 DOI: https://doi.org/10.1101/2021.04.05.21254952

Ali H, Alahmad B, Al-Shammari AA, Alterki A, Hammad M, Cherian P, et al. Previous COVID-19 infection and antibody levels after vaccination. Front Public Health. 2021;9:778243. https://doi.org/10.3389/fpubh.2021.778243 PMid:34926392 DOI: https://doi.org/10.3389/fpubh.2021.778243

Demonbreun AR, Sancilio A, Velez MP, Ryan DT, Saber R, Vaught LA, et al. Comparison of IgG and neutralizing antibody responses after one or two doses of COVID-19 mRNA vaccine in previously infected and uninfected individuals. EClinicalMedicine. 2021;38:101018. https://doi.org/10.1016/j.eclinm.2021.101018 PMid:34278286 DOI: https://doi.org/10.1016/j.eclinm.2021.101018

Papaneophytou C, Nicolaou A, Pieri M, Nicolaidou V, Galatou E, Sarigiannis Y, et al. Seroprevalence of immunoglobulin G antibodies against SARS-CoV-2 in Cyprus. PLoS One. 2022;17(6):e0269885. https://doi.org/10.1371/journal.pone.0269885 PMid:35696396 DOI: https://doi.org/10.1371/journal.pone.0269885

Keshavarz B, Richards NE, Workman LJ, Patel J, Muehling LM, Canderan G, et al. Trajectory of IgG to SARS-CoV-2 After vaccination with BNT162b2 or mRNA-1273 in an employee cohort and comparison with natural infection. Front Immunol. 2022;13:850987. https://doi.org/10.3389/fimmu.2022.850987 PMid:35386716 DOI: https://doi.org/10.3389/fimmu.2022.850987

Ikezaki H, Nomura H, Shimono N. Dynamics of anti-spike IgG antibody level after the second BNT162b2 COVID-19 vaccination in health care workers. J Infect Chemother. 2022;28(6):802-5. https://doi.org/10.1016/j.jiac.2022.02.024 PMid:35288023 DOI: https://doi.org/10.1016/j.jiac.2022.02.024

Uysal BB, Yavuzer S, Islamoglu MS, Cengiz M. Measurement of antibody levels in patients with COVID-19 over time byimmunofluorescence assay: A longitudinal observational study. J Int Med Res. 2022;50(1):3000605211069279. https://doi.org/10.1177/03000605211069279 PMid:34986676 DOI: https://doi.org/10.1177/03000605211069279

Madanat L, Sager M, O’connor D, Thapa B, Aggarwal N, Ghimire B, et al. Prognostic value of SARS-CoV-2 anti-RBD IgG antibody quantitation on clinical outcomes in hospitalized COVID-19 patients. Int J Gen Med. 2022;15:5693-700. https://doi.org/10.2147/IJGM.S370080 PMid:35755860 DOI: https://doi.org/10.2147/IJGM.S370080

Downloads

Published

2023-04-14

How to Cite

1.
Lihawa MY, Datau EA, Surachmanto E, Soekarno J, Tulaka B. Quantitative SARS-CoV-2 Spike Receptor-Binding Domain on Vaccinated Individuals Compared to Natural Infection. Open Access Maced J Med Sci [Internet]. 2023 Apr. 14 [cited 2024 May 3];11(B):524-8. Available from: https://oamjms.eu/index.php/mjms/article/view/11611

Issue

Section

Infective Diseases

Categories