Effect of Lupinus albus Conglutin Gamma Protein on Experimentally Induced Diabetes in Rats
DOI:
https://doi.org/10.3889/oamjms.2023.11780Keywords:
Adipocytokines, Conglutin gamma; Insulin resistance, DiabetesAbstract
BACKGROUND: Early insulin resistance and a progressive loss of pancreatic β cell function combine to cause type 2 diabetes (T2D), which leads to insufficient insulin production followed by hyperglycemia. Purified from Lupinus albus seed, conglutin gamma (Cγ) is a protein that lowers blood sugar. The primary function of adipocytokines, hormones released by adipose tissue, is to alert important organs to maintain metabolic balance.
AIM: This study aimed to identify and compare the role of Cγ and glimepiride in controlling hyperglycemia, insulin secretion, insulin resistance, and hyperlipidemia in high-fat diet (HFD) and low-dose streptozotocin (STZ) induced diabetes in experimental rats.
METHODS: Male Sprague–Dawley rat groups were divided into seven groups; normal, Cγ control, T2D control, and four T2D groups which received Cγ (30, 60, and 120 mg/kg) and Glimepiride (0.1 mg/kg) treatments. RESULTS: Administration of Cγ successfully eliminated hyperglycemia and increased insulin secretion and sensitivity. In addition, when compared to (STZ+HFD) control rats, treatment with Cγ improved the expression of leptin, adiponectin, and their blood concentrations, as well as the activity of the enzyme chitotriosidase. It also significantly decreased the expression of apelin, nicotinamide phosphoribosyltransferase and RBP4.
CONCLUSION: The present data suggests that Cγ has an effective role in controlling hyperglycemia induced by diabetes through amelioration of leptin, adiponectin, lipid profile, and metabolic syndrome.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Gerich JE. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of Type 2 diabetes mellitus. Mayo Clin Proc. 2003;78:447-56. https://doi.org/10.4065/78.4.447 PMid:126836976. DOI: https://doi.org/10.4065/78.4.447
Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am. 1997;26(3):539-51. https://doi.org/10.1016/s0889-8529(05)70266-8 PMid:9314014 DOI: https://doi.org/10.1016/S0889-8529(05)70266-8
Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, et al. Systematic review: Comparative effectiveness and safety of oral medications for Type 2 diabetes mellitus. Ann Intern Med. 2007;147(6):386-99. https://doi.org/10.7326/0003-4819-147-6-200709180-00178 PMid:17638715 DOI: https://doi.org/10.7326/0003-4819-147-6-200709180-00178
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in Type 2 diabetes. Lancet. 2006;368(9548):1696-705. https://doi.org/10.1016/S0140-6736(06)69705-5 PMid:17098089. DOI: https://doi.org/10.1016/S0140-6736(06)69705-5
Sirtori CR, Lovati MR, Manzoni C, Castiglioni S, Duranti M, Magni C, et al. Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr. 2004;134(1):18-23. https://doi.org/10.1093/jn/134.1.18 PMid:14704287 DOI: https://doi.org/10.1093/jn/134.1.18
Lee MW, Lee M, Oh KJ. Adipose tissue-derived signatures for obesity and Type 2 diabetes: Adipokines, batokines and MicroRNAs. J Clin Med. 2019;8(6):854. https://doi.org/10.3390/jcm8060854 PMid:31208019. DOI: https://doi.org/10.3390/jcm8060854
Magni C, Sessa F, Accardo E, Vanoni M, Morazzoni P, Scarafoni A, et al. Conglutin gamma, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats. J Nutr Biochem. 2004;15(11):646-50. https://doi.org/10.1016/j.jnutbio.2004.06.009 PMid:15590267 DOI: https://doi.org/10.1016/j.jnutbio.2004.06.009
Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, et al. Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia. 2011;82(7):933-8. https://doi.org/10.1016/j.fitote.2011.05.007 PMid:21605639. DOI: https://doi.org/10.1016/j.fitote.2011.05.007
Lovati MR, Manzoni C, Castiglioni S, Parolari A, Magni C, Duranti M. Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr. 2012;107(1):67-73. https://doi.org/10.1017/S0007114511002601 PMid:21733318 DOI: https://doi.org/10.1017/S0007114511002601
Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A. The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Technol. 2008;19(12):624-33. https://doi.org/10.1016/j.tifs.2008.07.002 DOI: https://doi.org/10.1016/j.tifs.2008.07.002
Capraro J, Magni C, Scarafoni A, Duranti M. Susceptibility of lupin gamma-conglutin, the plasma glucose-lowering protein of lupin seeds, to proteolytic enzymes. J Agric Food Chem. 2009;57(18):8612-6. https://doi.org/10.1021/jf9017542 PMid:19705831 DOI: https://doi.org/10.1021/jf9017542
Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic adaptation in obesity and Type II diabetes: Myokines, adipokines and hepatokines. Int J Mol Sci. 2016;18(1):8. https://doi.org/10.3390/ijms18010008 PMid:28025491 DOI: https://doi.org/10.3390/ijms18010008
Żurawska-Płaksej E, Knapik-Kordecka M, Rorbach-Dolata A, Piwowar A. Increased chitotriosidase activity in plasma of patients with Type 2 diabetes. Arch Med Sci. 2016;12(5):977-84. https://doi.org/10.5114/aoms.2016.60093 PMid:27695487 DOI: https://doi.org/10.5114/aoms.2016.60093
Martínez-Ayala AL, López-Laredo AR, González-Hernández A, Moreno A, Dávila-Ortiz G. The Molecular Characteristics of the Conglutin Gamma in Lupinus campestris. In Lupin, an Ancient Crop for the New Millennium. In: Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20-24 June, 1999. Baltimore MD: International Lupin Association; 2000. p. 371-72.
Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223-31. https://doi.org/10.1016/0003-2697(91)90094-a PMid:18127891 DOI: https://doi.org/10.1016/0003-2697(91)90094-A
Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of Type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390-4. https://doi.org/10.1053/meta.2000.17721 PMid:11092499 DOI: https://doi.org/10.1053/meta.2000.17721
Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51. https://doi.org/10.1093/jn/123.11.1939 PMid:8229312 DOI: https://doi.org/10.1093/jn/123.11.1939
Srinivasan K, Patole PS, Kaul CL, Ramarao P. Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol. 2004;26(5):327-33. https://doi.org/10.1358/mf.2004.26.5.831322 PMid:15319810 DOI: https://doi.org/10.1358/mf.2004.26.5.831322
Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for Type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313-20. https://doi.org/10.1016/j.phrs.2005.05.004 PMid:15979893 DOI: https://doi.org/10.1016/j.phrs.2005.05.004
Algandaby MM, Alghamdi HA, Ashour OM, Abdel-Naim AB, Ghareib SA, Abdel-Sattar EA, et al. Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2010;48(8-9):2448-53. https://doi.org/10.1016/j.fct.2010.06.010 PMid:20538037 DOI: https://doi.org/10.1016/j.fct.2010.06.010
Sandoval-Muñíz RJ, Vargas-Guerrero B, Guzmán TJ, García- López PM, Martínez-Ayala AL, Domínguez-Rosales JA, et al. Lupin gamma conglutin protein: Effect on Slc2a2, Gck and Pdx-1 gene expression and GLUT2 levels in diabetic rats. Rev Bras Farmacogn. 2018;28(6):716-23. https://doi.org/10.1016/j.bjp.2018.08.0026 DOI: https://doi.org/10.1016/j.bjp.2018.08.002
Saad MI, Kamel MA, Hanafi MY. Modulation of adipocytokines production and serum NEFA level by metformin, glimepiride, and sitagliptin in HFD/STZ Diabetic Rats. Biochem Res Int. 2015;2015:138134. https://doi.org/10.1155/2015/138134 PMid:258389474. DOI: https://doi.org/10.1155/2015/138134
Vogler GA. Anesthesia and Analgesia, in the Laboratory Rat. Netherlands: Elsevier; 2006. p. 627-64. DOI: https://doi.org/10.1016/B978-012074903-4/50022-4
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883 PMid:3899825 DOI: https://doi.org/10.1007/BF00280883
Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402-10. https://doi.org/10.1210/jcem.85.7.6661 PMid:10902785 DOI: https://doi.org/10.1210/jcem.85.7.6661
Katz M.H. Study Design and Statistical Analysis: A Practical Guide for Clinicians. Cambridge: Cambridge University Press; 2006. DOI: https://doi.org/10.1017/CBO9780511616761
Zepeda-Peña AC, Gurrola-Díaz CM, Domínguez-Rosales JA, García-López PM, Pizano-Andrade JC, Hernández-Nazará ZH, et al. Effect of lupinus rotundiflorus gamma conglutin treatment on JNK1 gene expression and protein activation in a rat model of Type 2 diabetes. Pharm Biol. 2021;59(1):374-80. https://doi.org/10.1080/13880209.2021.1893757 PMid:33784492 DOI: https://doi.org/10.1080/13880209.2021.1893757
González-Santiago AE, Vargas-Guerrero B, García-López PM, Martínez-Ayala AL, Domínguez-Rosales JA, Gurrola-Díaz CM. Lupinus albus conglutin gamma modifies the gene expressions of enzymes involved in glucose hepatic production In vivo. Plant Foods Hum Nutr. 2017;72(2):134-40. https://doi.org/10.1007/s11130-016-0597-7 PMid:28101822 DOI: https://doi.org/10.1007/s11130-016-0597-7
Hininger-Favier I, Benaraba R, Coves S, Anderson RA, Roussel AM. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J Am Coll Nutr. 2009;28(4):355-61. https://doi.org/10.1080/07315724.2009.107 18097 PMid:20368373 DOI: https://doi.org/10.1080/07315724.2009.10718097
Tanaka S, Hayashi T, Toyoda T, Hamada T, Shimizu Y, Hirata M, et al. High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle. Metabolism. 2007;56(12):1719-28. https://doi.org/10.1016/j.metabol.2007.07.017 PMid:17998027 DOI: https://doi.org/10.1016/j.metabol.2007.07.017
Singla S, Kaur K, Kaur G, Kaur H, Kaur J, Jaswal S. Lipoprotein (a) in Type 2 diabetes mellitus: Relation to LDL: HDL ratio and glycemic control. Int J Diabetes Dev Ctries. 2009;29(2):80-4. https://doi.org/10.4103/0973-3930.53125 PMid:20142873 DOI: https://doi.org/10.4103/0973-3930.53125
Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63(12):1469-79. http://doi.org/10.1016/j.metabol.2014.08.010 PMid:25242435. DOI: https://doi.org/10.1016/j.metabol.2014.08.010
Bouchoucha R, Ben frad MK, Bouchoucha M, Akrout M, Feki M, Kaabachi N, et al. Anti-hyperglycemic and anti-hyperlipidemic effects of Lupinus albus in Type 2 diabetic patients: A randomized double-blind, placebo-controlled clinical trial. Int J Pharmacol. 2016;12(8):830-7. https://doi.org/10.3923/ijp.2016.830.837 DOI: https://doi.org/10.3923/ijp.2016.830.837
Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762-78. https://doi.org/10.1210/er.2006-0033 Mid:17056740. DOI: https://doi.org/10.1210/er.2006-0033
Vargas-Guerrero B, García-López PM, Martínez-Ayala AL, Domínguez-Rosales JA, Gurrola-Díaz CM. Administration of Lupinus albus gamma conglutin (Cγ) to n5 STZ rats augmented Ins-1 gene expression and pancreatic insulin content. Plant Foods Hum Nutr. 2014;69(3):241-7. https://doi.org/10.1007/s11130-014-0424-y PMid:24894193 DOI: https://doi.org/10.1007/s11130-014-0424-y
Kabadi MU, Kabadi UM. Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed Type 2 diabetes mellitus. Clin Ther. 2004;26(1):63-9. https://doi.org/10.1016/s0149-2918(04)90006-9 PMid:149965189. DOI: https://doi.org/10.1016/S0149-2918(04)90006-9
Capraro J, Clemente A, Rubio LA, Magni C, Scarafoni A, Duranti M. Assessment of the lupin seed glucose-lowering protein intestinal absorption by using in vitro and ex vivo models. Food Chem. 2011;125(4):1279-83. https://doi.org/10.1016/j.foodchem.2010.10.073 DOI: https://doi.org/10.1016/j.foodchem.2010.10.073
Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia. 1999;42(7):856-64. https://doi.org/10.1007/s001250051238 PMid:10440129 DOI: https://doi.org/10.1007/s001250051238
Nguyen TM. Adiponectin: Role in physiology and pathophysiology. Int J Prev Med. 2020;11:136. http://doi.org/10.4103/ijpvm.IJPVM_193_20 PMid:330884646. DOI: https://doi.org/10.4103/ijpvm.IJPVM_193_20
Nourbakhsh M, Nourbakhsh M, Gholinejad Z, Razzaghy-Azar M. Visfatin in obese children and adolescents and its association with insulin resistance and metabolic syndrome. Scand J Clin Lab Invest. 2015;75(2):183-8. https://doi.org/10.3109/00365513.2014.1003594 DOI: https://doi.org/10.3109/00365513.2014.1003594
Downloads
Published
How to Cite
License
Copyright (c) 2023 Marwa Bhieldeen (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0