Photosensitizing Herbs as Potential Therapeutics: A Prospective Insights into their Mechanisms for the Development of Novel Drug Leads in War with Cancer and Other Human Diseases


  • Mohamed Ali Seyed Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
  • Elodemi Mahmoud Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia



Photosensitizing agents, Hypocrellins, Hypericin, Anti-tumor, Curcumin, PDT


In recent years, photodynamic therapy (PDT) has been accepted as an alternative option for the treatment of a wide spectrum of human ailments. It is a minimally invasive treatment that involves the interaction of a non-toxic photosensitizer. In PDT, combining photosensitizing (PS) agent that absorbs specified wavelength of light, which in turn produces free radical molecules to eliminate unwanted cells and tissues. The photosensitization process is activated by the light-induced excitation of molecules within the tissue. Bioactive principles acquired from plants documented as nature-inspired potential photosensitizers with varied properties against microbes, insects, or tumor cells. PDT is a promising method for removing diverse types of cancers but needs to be recognized in therapy as conventional chemotherapy. At present, natural compounds with PS properties are being continuously unearthed and identified. As of now, hundreds of photosensitive drugs or drug leads identified from natural sources with reduced or no toxicity to healthy tissues and no side effects encourage investigators to pursue natural PS for PDT. Although existing PS was developed years back, only a handful of them are engaged in human clinical applications. The main classes of natural photosensitizers discussed in this review are chlorophylls (hypocrellin A and B), hypericin, chlorins (Chlorin e6), and other emerging ones such as curcumin. Hence, the present review aimed to explore the efficacious PS properties of a few herbal-derived PS, preferably the potential ones in terms of specificity, and mechanism of action, inducing less or no toxicity to normal cells but their other medicinal applications.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Beutler JA. Natural products as a foundation for drug discovery. Curr Protoc Pharmacol. 2009;46:9.11.1-9.21. PMid:20161632 DOI:

Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus (Calcutta). 2022;65(3):399-411. PMid:36276225 DOI:

Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in Healthcare. Cambridge: Academic Press; 2020. p. 25-60. DOI:

Mathur S, Hoskins C. Drug development: Lessons from nature. Biomed Rep. 2017;6(6):612-4. PMid:28584631 DOI:

Mello MM. Barriers to ensuring access to affordable prescription drugs. Annu Rev Pharmacol Toxicol. 2020;60:275-89. PMid:31136248 DOI:

Ali SM, Chee SK, Yuen GY, Olivo M. Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells. Int J Mol Med 2002;9(3):257-70. DOI:

Diwu Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol. 1995;61(6):529-39. PMid:7568399 DOI:

Diwu ZJ, Haugland RP, Liu J, Lown JW, Miller GG, Moore RB, et al. Photosensitization by anticancer agents 21: New perylene- and

aminonaphthoquinones. Free Radic Biol Med. 1996;20(4):589- 93. PMid:8904300 DOI:

Xu S, Chen S, Zhang M, Shen T, Zhao Y, Liu Z, et al. Butylamino-demethoxy-hypocrellins and photodynamic therapy decreases human cancer in vitro and in vivo. Biochim Biophys Acta. 2001;1537(3):222-32. PMid:11731224 DOI:

Wainwright CL, Teixeira MM, Adelson DL, Braga FC, Buenz EJ, David B, et al. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacol Res. 2022;177:106076. PMid:35074524 DOI:

Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3(4):200-1. PMid:23378939 DOI:

Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-derived natural products in cancer research: Extraction, mechanism of action, and drug formulation. Molecules. 2020;25(22):10.3390/molecules25225319. PMid:33202681 DOI:

Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200-16. PMid:33510482 DOI:

Wagner H, Ulrich-MG. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16(2- 3):97-110. PMid:19211237 DOI:

Geysen HM, Schoenen F, Wagner D, Wagner R. Combinatorial compound libraries for drug discovery: An ongoing challenge. Nat Rev Drug Discov. 2003;2(3):222-30. PMid:12612648 DOI:

Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA. Chromolaena odorata: A neglected weed with a wide spectrum of pharmacological activities (Review). Mol Med Rep. 2017;15(3):1007-16. PMid:28112383 DOI:

Jantan I, Syed Nasir AB, Mohamed Ali SM, Wai LK, Mesaik MA. The evolving role of natural products from the tropical rainforests as a replenishable source of new drug leads. In: Drug Discovery and Development-From Molecules to Medicine. London: IntechOpen; 2015. p. 3-38. DOI:

Amit KA, Chandrashekar DR, Shripal MC. Natural Products in Drug Discovery. Pharmacognosy - Medicinal Plants. London: IntechOpen; 2019.

Seyed MA, Vijayaraghavan K. Dengue virus infections and anti- dengue virus activities of Andrographis paniculata. Asian Pac J Trop Med. 2020;13(2):49. DOI:

Katiyar C, Gupta A, Kanjilal S, Katiyar S. Drug discovery from plant sources: An integrated approach. Ayu. 2012;33(1):10-9. PMid:23049178 DOI:

Seyed MA. A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of human diseases. Biocat Agric Biotechnol. 2019;17:529-37. DOI:

Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ. Recent advances in the synthetic biology of natural drugs. Front Bioeng Biotechnol. 2021;9:691152. PMid:34395399 DOI:

Mouhssen L. The success of natural products in drug discovery. Pharmacol Pharm. 2013;4:17-31. DOI:

Dougherty TJ. Photodynamic therapy. Photochem Photobiol. 1993;58:895-900. DOI:

Ali SM, Olivo M, Yuen GY, Chee SK. Photodynamic-induced apoptosis of human nasopharyngeal carcinoma cells using Hypocrellins. Int J Oncol. 2001;19(3):633-43. PMid:11494047 DOI:

Ali SM, Olivo M. Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells. Int J Oncol. 2002;21(3):531-40. DOI:

Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96(1):1-8. PMid:19406659 DOI:

Aziz B, Aziz I, Khurshid A, Raoufi E, Esfahani FN, Jalilian Z, et al. An overview of potential natural photosensitizers in cancer photodynamic therapy. Biomedicines. 2023;11(1):224. PMid:36672732 DOI:

Hamblin MR, Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436-50. b311900a PMid:15122361 DOI:

Gitika BK, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections. Lasers Surg Med. 2011;43(7):755-67. PMid:22057503 DOI:

Sharma SK, Mroz P, Dai T, Huang YY, St Denis TG, Hamblin MR. Photodynamic therapy for cancer and for infections: What is the difference? Isr J Chem. 2012;52(8-9):691-705. PMid:23248387 DOI:

Ali-Seyed M, Bhuvaneswari R, Soo KC, Olivo M. Photolon™ --photosensitization induces apoptosis via ROS- mediated cross-talk between mitochondria and lysosomes. Int J Oncol. 2011;39(4):821-31. PMid:21725591 DOI:

Geltzer A, Turalba A, Vedula SS. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2013;1(1):CD005022. CD005022.pub3 PMid:23440797 DOI:

Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007;1776(1):86-107. https://doi. org/10.1016/j.bbcan.2007.07.001 PMid:17693025 DOI:

Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine (Review). Photochem Photobiol. 1997;66(4):479-83. PMid:9337618 DOI:

Piette J, Volanti C, Vantieghem A, Matroule JY, Habraken Y, Agostinis P. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem Pharmacol. 2003;66(8):1651-9. PMid:14555246 DOI:

Wang KN, Liu LY, Qi G, Chao XJ, Ma W, Yu Z, et al. Light-driven cascade mitochondria-to-nucleus photosensitization in cancer cell ablation. Adv Sci (Weinh). 2021;8(8):2004379. PMid:33898198 DOI:

Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. Int Rev Cell Mol Biol. 2012;295:139-74. B978-0-12-394306-4.00010-1 PMid:22449489

Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: A comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther. 2022;7(1):379. PMid:36402753 DOI:

Nowak-Stępniowska A, Wiktorska K, Małecki M, Romiszewska A, Padzik-Graczyk A. Cytotoxicity of PP(Arg) (2)- and Hp(Arg)(2)-mediated photodynamic therapy and early stage of apoptosis induction in prostate carcinoma in vitro. Acta Biochim Pol. 2011;58(4):497-505. DOI:

Lima E, Reis LV. Photodynamic therapy: From the basics to the current progress of N-heterocyclic-bearing dyes as effective photosensitizers. Molecules. 2023;28(13):5092. PMid:37446758 DOI:

Marrelli M, Menichini G, Provenzano E, Conforti F. Applications of natural compounds in the photodynamic therapy of skin cancer. Curr Med Chem. 2014;21(12):1371-90. PMid:23531223 DOI:

Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021;9(10):2041. PMid:34683362 DOI:

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61. PMid:26852623 DOI:

Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10(3):148-54. PMid:18321817 DOI:

O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053-74. https://doi. org/10.1111/j.1751-1097.2009.00585.x PMid:19682322 DOI:

Hamblin MR, Chiang LY, Lakshmanan S, Huang YY, Garcia- Diaz M, Karimi M, et al. Nanotechnology for photodynamic therapy: A perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. Nanotechnol Rev. 2015;4(4):359-72. PMid: 26640747 DOI:

Pervaiz S, Olivo M. Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol. 2006;33(5-6):551-6. PMid:16700893 DOI:

Algorri JF, López-Higuera JM, Rodríguez-Cobo L, Cobo A. Advanced light source technologies for photodynamic therapy of skin cancer lesions. Pharmaceutics. 2023;15(8):2075. PMid:37631289 DOI:

Kubrak TP, Kołodziej P, Sawicki J, Mazur A, Koziorowska K, Aebisher D. Some natural photosensitizers and their medicinal properties for use in photodynamic therapy. Molecules. 2022;27(4):1192. PMid:35208984 DOI:

Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17(3):173-86. PMid:12181632 DOI:

Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996;64(3):469-85. PMid:8806226 DOI:

Benov L. Photodynamic therapy: Current status and future directions. Med Princ Pract. 2015;24 Suppl 1(Suppl 1):14-28. PMid:24820409 DOI:

Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47(16):3897-915. PMid:15267226 DOI:

Udrea AM, Smarandache A, Dinache A, Mares C, Nistorescu S, Avram S, et al. Photosensitizers-loaded nanocarriers for enhancement of photodynamic therapy in melanoma treatment. Pharmaceutics. 2023;15(8):2124. PMid:37631339 DOI:

Palumbo G. Photodynamic therapy and cancer: A brief sightseeing tour. Expert Opin Drug Deliv. 2007;4(2):131-48. PMid:17335411 DOI:

Sarbadhikary P, George BP, Abrahamse H. Potential application of photosensitizers with high-Z elements for synergic cancer therapy. Front Pharmacol. 2022;13:921729. PMid:35837287 DOI:

Downum KR, Wen J. The Occurrence of Photosensitizers among higher plants. In: Light-Activated Pest Control. Ch.

Washington, DC: The American Chemical Society; 1995. p. 135-43.

Thirumurugan D, Cholarajan A, Raja SS, Vijayakumar R. An introductory chapter. In: Secondary Metabolites-Sources Applications. London: IntechOpen; 2018. p. 1-21. DOI:

Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2(1):32-50. PMid:22211188 DOI:

Marrelli M, Statti G, Conforti F. A Review of Biologically Active Natural Products from Mediterranean Wild Edible Plants: Benefits in the Treatment of Obesity and Its Related Disorders. Molecules. 2020;25(3):649. PMidD: 32028716 DOI:

Jong WW, Tan PJ, Kamarulzaman FA, Mejin M, Lim D, Ang I, et al. Photodynamic activity of plant extracts from Sarawak, Borneo. Chem Biodivers. 2013;10(8):1475-86. PMid:23939795 DOI:

Mansoori B, Mohammadi A, Amin Doustvandi M, Mohammadnejad F, Kamari F, Gjerstorff MF, et al. Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn Ther. 2019;26:395-404. PMid:31063860 DOI:

Foresto E, Gilardi P, Ibarra LE, Cogno IS. Light-activated green drugs: How we can use them in photodynamic therapy and mass-produce them with biotechnological tools. Phytomed Plus. 2021;1(3):100044. DOI:

haneshwar S, Patil K, Bulbule M, Kinjawadekar V, Joshi D, Joshi V. Photodynamic therapy for cancer. Int J Pharm Sci Rev Res. 2014;27(2):125-41.

Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. PMid:30275968 DOI:

Berlanda J, Kiesslich T, Engelhardt V, Krammer B, Plaetzer K. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem Photobiol B. 2010;100(3):173-80. PMid:20599390 DOI:

Almadi KH, Alkahtany MF, Almutairi B. Influence of synthetic and natural photosensitizers activated by photodynamic therapy on extrusion bond strength of fiber post to radicular dentin. Pak J Med Sci. 2021;37(7):1912-7. PMid:34912417 DOI:

Shrestha R, Mallik SK, Lim J, Gurung P, Magar TBT, Kim YW. Efficient synthesis of chlorin e6 and its potential photodynamic immunotherapy in mouse melanoma by the abscopal effect. Int J Mol Sci. 2023;24(4):10.3390/ijms24043901. PMid:36835310 DOI:

Sobaniec S, Bernaczyk P, Pietruski J, Cholewa M, Skurska A, Dolińska E, et al. Clinical assessment of the efficacy of photodynamic therapy in the treatment of oral lichen planus. Lasers Med Sci. 2013;28(1):311-6. PMid:22814895 DOI:

Allison RR, Sibata C, Mang TS, Bagnato VS, Downie GH, Hu XH, et al. Photodynamic therapy for chest wall recurrence from breast cancer. Photodiagnosis Photodyn Ther. 2004;1(2):157- 71. PMid:25048186 DOI:

Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano. 2023;17(9):7979-8003. PMid:37129253 DOI:

Kessel D, Luo Y. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B. 1998;42(2):89-95. PMid:9540214 DOI:

Galanou MC, Theodossiou TA, Tsiourvas D, Sideratou Z, Paleos CM. Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochem Photobiol. 2008;84(5):1073-83. PMid:18627515 DOI:

Zhao J, Wu W, Sun J, Guo S. Triplet photosensitizers: From molecular design to applications. Chem Soc Rev. 2013;42(12):5323-51. PMid:23450221 DOI:

Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent advances in self-exciting photodynamic therapy. Front Bioeng Biotechnol. 2020;8:594491. PMid:33195164 DOI:

Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc. 2013;46(1):7- 23. PMid:23423543 DOI:

Chin WW, Heng PW, Bhuvaneswari R, Lau WK, Olivo M. The potential application of chlorin e6-polyvinylpyrrolidone formulation in photodynamic therapy. Photochem Photobiol Sci. 2006;5(11):1031-7. PMid:17077899 DOI:

Trukhachova T. Safety and Efficacy of Photosensitizer Photolon (Fotolon) in Photodynamic Therapy. In: Proceeding SPIE 11070, 17th International Photodynamic Association World Congress, 1107037; 2019. DOI:

Waidelich R. Laser-induced lithotripsy and photodynamic therapy in urology: A short introduction to current laser applications. Med Laser Appl. 2010;25(1):14-9. DOI:

Li JH, Chen ZQ, Huang Z, Zhan Q, Ren FB, Liu JY, et al. In vitro study of low intensity ultrasound combined with different doses of PDT: Effects on C6 glioma cells. Oncol Lett. 2013;5(2):702-6. PMid:23420417 DOI:

Copley L, Pauline WV, Wirtz KW, Iqbal Parker M, Leaner VD. Photolon, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. Int J Biochem Cell Biol. 2008;40(2):227-35. PMid:17822943 DOI:

Isakau HA, Parkhats MV, Knyukshto VN, Dzhagarov BM, Petrov EP, Petrov PT. Toward understanding the high PDT efficacy of chlorin e6-polyvinylpyrrolidone formulations: Photophysical and molecular aspects of photosensitizer-polymer interaction in vitro. J Photochem Photobiol B. 2008;92(3):165- 74. PMid:18656379 DOI:

JuzenieneA, Thu Tam TT, Iani V, Moan J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free Radic Biol Med. 2009;47(8):1199-204. PMid:19647791 DOI:

Trukhachova TV, Shliakhtsin SV, Cerkovsky DA, Istomin YP. A novel finished formulation of the photosensitizer Photolon® for topical application. Evaluation of the efficacy in patients with basal-cell carcinoma of the skin. Photodiagn Photodyn Ther. 2011;8:200-1. DOI:

Sharma S, Bakal J, Oliver-Fernandez A, Blair J. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in age-related macular degeneration: Results of an effectiveness study. Arch Ophthalmol. 2004;122(6):853-6. PMid:15197060 DOI:

Horibe S, Nagai J, Yumoto R, Tawa R, Takano M. Accumulation and photodynamic activity of chlorin e6 in cisplatin-resistant human lung cancer cells. J Pharm Sci. 2011;100(7):3010-7. PMid:21274848 DOI:

Spikes JD. Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B. 1990;6(3):259-74. PMid:2120404 DOI:

Ding HL, Wang XL, Wang HW, Huang Z. Successful treatment of refractory facial acne using repeat short-cycle ALA-PDT: Case study. Photodiagnosis Photodyn Ther. 2011;8(4):343-6. PMid:22122923 DOI:

Cabrera H, Castro J, Grassi HC, Andrades ED, López-Rivera SA. The effect of photodynamic therapy on contiguous untreated tumor. Dermatol Surg. 2012;38(7 Pt 1):1097-9. PMid:22471374 DOI:

Thong PS, Olivo M, Kho KW, Bhuvaneswari R, Chin WW, Ong KW, et al. Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy. J Environ Pathol Toxicol Oncol. 2008;27(1):35-42. PMid:18551894 DOI:

Marchal S, François A, Dumas D, Guillemin F, Bezdetnaya L. Relationship between subcellular localisation of Foscan® and caspase activation in photosensitised MCF-7 cells. Br J Cancer. 2007;96(6):944-51. PMid:17325708 DOI:

Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J. 2018;233:8-18. PMid:29486883 DOI:

Meier D, Botter SM, Campanile C, Robl B, Gräfe S, Pellegrini G, et al. Foscan and foslip based photodynamic therapy in osteosarcoma in vitro and in intratibial mouse models. Int J Cancer. 2017;140(7):1680-92. PMid:27943293 DOI:

Spikes JD, Bommer JC. Photosensitizing properties of mono-L-aspartyl chlorin e6 (NPe6): A candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B. 1993;17(2):135-43. PMid:8459317 DOI:

Yumita N, Iwase Y, Nishi K, Ikeda T, Komatsu H, Fukai T, et al. Sonodynamically-induced antitumor effect of mono-l-aspartyl chlorin e6 (NPe6). Anticancer Res 2011;31(2):501-6.

Aizawa K, Okunaka T, Ohtani T, Kawabe H, Yasunaka Y, O’Hata S, et al. Localization of mono-L-aspartyl chlorin e6 (NPe6) in mouse tissues. Photochem Photobiol. 1987;46(5):789-93. PMid:3441501 DOI:

Ferreira S, Juliana Menezes PF, Kurachi C, Sibata C, Allison RR, Bagnato V. Photostability of different chlorine photosensitizers. Laser Phys Lett. 2008;5:156-61. DOI:

Mirzaei H, Djavid GE, Hadizadeh M, Jahanshiri-Moghadam M, Hajian P. The efficacy of Radachlorin-mediated photodynamic therapy in human hepatocellular carcinoma cells. J Photochem Photobiol B. 2015;142:86-91. PMid:25528192 DOI:

Ghoodarzi R, Changizi V, Montazerabadi AR, Eyvazzadaeh N. Assessing of integration of ionizing radiation with Radachlorin- PDT on MCF-7 breast cancer cell treatment. Lasers Med Sci. 2016;31(2):213-9. PMid:26690358 DOI:

Kochneva EV, Filonenko EV, Vakulovskaya EG, Scherbakova EG, Seliverstov OV, Markichev NA, et al. Photosensitizer radachlorin®: Skin cancer PDT phase II clinical trials. Photodiagnosis Photodyn Ther. 2010;7(4):258-67. PMid:21112549 DOI:

Anand S, Rollakanti KR, Brankov N, Brash DE, Hasan T, Maytin EV. Fluorouracil enhances photodynamic therapy of squamous cell carcinoma via a p53-independent mechanism that increases protoporphyrin IX levels and tumor cell death. Mol Cancer Ther. 2017;16(6):1092-101. PMid:28336806 DOI:

Gijsens A, De Witte P. Photocytotoxic action of EGF-PVA-Sn(IV) chlorin e6 and EGF-dextran-Sn(IV)chlorin e6 internalizable conjugates on A431 cells. Int J Oncol. 1998;13(6):1171-7. PMid:9824627 DOI:

Brasseur N, Ouellet R, La Madeleine C, van Lier JE. Water- soluble aluminium phthalocyanine-polymer conjugates for PDT: Photodynamic activities and pharmacokinetics in tumour- bearing mice. Br J Cancer. 1999;80(10):1533-41. PMid:10408394 DOI:

Bonnett R, Djelal BD, Nguyen A. Physical and chemical studies related to the development of m‐THPC (FOSCAN®) for the photodynamic therapy (PDT) of tumours. J. Porphyrins Phthalocyanines. 2001;5:652-61. DOI:

Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ. Photodynamic therapy: A new concept in medical treatment. Braz J Med Biol Res. 2000;33(8):869-80. PMid:11023333 DOI:

Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018;8(2):137-46. PMid:29719775 DOI:

Allison RR, Bagnato VS, Cuenca R, Downie GH, Sibata CH. The future of photodynamic therapy in oncology. Future Oncol. 2006;2(1):53-71. PMid:16556073 DOI:

Busch T, Cengel KA, Finlay J. Pheophorbide a as a photosensitizer in photodynamic therapy: In vivo considerations. Cancer Biol Ther. 2009;8(6):540-2. cbt.8.6.8067 PMid:19252412 DOI:

Mojzisova H, Bonneau S, Vever-Bizet C, Brault D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim Biophys Acta. 2007;1768(11):2748-56. PMid:17692283 DOI:

Shim G, Lee S, Kim YB, Kim CW, Oh YK. Enhanced tumor localization and retention of chlorin e6 in cationic nanolipoplexes potentiate the tumor ablation effects of photodynamic therapy. Nanotechnology. 2011;22(36):365101. PMid:21841215 DOI:

Battersby AR. Tetrapyrroles: The pigments of life. Nat Prod Rep. 2000;17(6):507-26. PMid:11152419 DOI:

Li Z, Wang C, Cheng L, Gong H, Yin S, Gong Q, et al. PEG- functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 2013;34(36):9160-70. PMid:24008045 DOI:

Sun L, Li Q, Hou M, Gao Y, Yang R, Zhang L, et al. Light- activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomater Sci. 2013;6(11):2881-95. PMid:30192355 DOI:

Kostenich GA, Zhuravkin IN, Zhavrid EA. Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors. J Photochem Phtobiol B. 1994;22(3):211-7. PMid:8014753 DOI:

Brockmann H, Haschad MN, Maier K, et al. About hypericin, the photodynamically active dye from Hypericum perforatum. Nat Sci. 1939;27:550. DOI:

Abels C, Szeimies RM, Steinbach P, Richert C, Goetz AE. Targeting of the tumor microcirculation by photodynamic therapy with a synthetic porphycene. J Photochem Photobiol B. 1997;40(3):305-12. s1011-1344(97)00074-2 PMid:9372621 DOI:

Blant SA, Woodtli A, Wagnières G, Fontolliet C, van den Bergh H, Monnier P. In vivo fluence rate effect in photodynamic therapy of early cancers with tetra(m-hydroxyphenyl) chlorin. Photochem Photobiol. 1996;64(6):963-8. PMid:8972639 DOI:

Ahmad N, Gupta S, Feyes DK, Mukhtar H. Involvement of Fas (APO-l/CD-95) during photodynamic-therapy-mediated apoptosis in human epidermoid carcinoma A431 cells. J Invest Dermatol. 2006;115(6):1041-6. PMid:11121139 DOI:

Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy- induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem. 2001;276(50):47379-86. PMid:11579101 DOI:

Xu NF, Li JF, Cao EH, Wang JZ. Direct observation of dynamic process of cellular uptake of hypocrellin A in HeLa cells. Acta Bio Physica Sinica. 1995;11:261-6.

Miller GG, Brown K and Ballengrud AM. Preclinical assessment of Hypocrellins and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: Progress update. Photochem Photobiol. 1995;65:714-22. DOI:

Lavie G, Mazur Y, Lavie D, Meruelo D. The chemical and biological properties of hypericin--a compound with a broad spectrum of biological activities. Med Res Rev. 1995;15(2):111- 9. PMid:7739292 DOI:

Miller GG, Brown K, Moore RB, Diwu ZJ, Liu J, Huang L, et al. Uptake kinetics and intracellular localization of hypocrellin photosensitizer for photodynamic therapy: Preclinical assessment of Hypocrellin A and Hypocrellin B as sensitizers for PDT of cancers. Photochem Photobiol. 1995;61(6):632-638. PMid: 7568409

Miller GG, Brown K, Moore RB, Diwu ZJ, Liu J, Huang L, et al. Uptake kinetics and intracellular localization of hypocrellin photosensitizer for photodynamic therapy: A confocal microscopy study. Photochem Photobiol. 1995;61(6):632-8. PMid:7568409 DOI:

Dong CY, Jia HT, Ma CM. The inhibitory effect of the new photosensitizer hypocrellin A on experimental tumors. Chin J Biochem. 1987;20:468-72.

Kamuhabwa AR, Agostinis P, D’Hallewin MA, Kasran A, de Witte PA. Photodynamic activity of hypericin in human urinary bladder carcinoma cells. Anticancer Res. 2000;20(4):2579-84.

Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GH. Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus. Photochem Photobiol. 1994;60(3):253- 5. PMid:7972377 DOI:

Hirayama J, Ikebuchi K, Abe H, Kwon KW, Ohnishi Y, Horiuchi M, et al. Photoactivation of virus infectivity by hypocrellin A. Photochem Photobiol. 1997;66:697-700. DOI:

Diwu Z, Lown JW. Photosensitization by anticancer agents 12. Perylene quinonoid pigments, a novel type of singlet oxygen sensitizer. J Photochem Photobiol Chem. 1992;64(3):273-87. DOI:

Kitanov GM. Hypericin and pseudohypericin in some Hypericum species. Biochem Syst Ecol. 2001;29(2):171-8. PMid:11106845 DOI:

Ayan AK, Cirak C, Kevseroglu K, Ozen T. Hypericin in some Hypericum species from Turkey. Asian J Plant Sci. 2004;3:200-2. DOI:

Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. Chichester: John Wiley & Sons Ltd.; 2002. DOI:

Garnica S, Weiss M, Oberwinkler F. Morphological and molecular phylogenetic studies in South American Cortinarius species. Mycol Res. 2003;107(Pt 10):1143-56. PMid:14635763 DOI:

Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod. 2008;71(2):159-62. PMid:18220354 DOI:

Kusari S, Zühlke S, Kosuth J, Cellárová E, Spiteller M. Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod. 2009;72(10):1825-35. PMid:19746917 DOI:

Kucharíková A, Kimáková K, Janfelt C, Čellárová E. Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging. Physiol Plant. 2016;157(1):2-12. PMid:26822391 DOI:

Cellárová E. Effect of exogenous morphogenetic signals on ˇ differentiation in vitro and secondary metabolite formation in the genus Hypericum. In: Odabas MS, Çırak C, editors. Medicinal and Aromatic Plant Science and Biotechnology 5 (Special Issue 1). Ikenobe: Global Science Books; 2011. p. 62-9.

Košuth J, Koperdáková J, Tolonen A, Hohtola A, Cellárová E. The content of hypericins and phloroglucinols in Hypericum perforatum L. seedlings at early stage of development. Plant Sci. 2003;165:515-21. DOI:

Urbanová M, Kosuth J, Cellárová E. Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Rep. 2006;25(2):140-7. PMid:16456647 DOI:

Brunáková K, Petijová L, Zámecník J, Turecková V, Cellárová E. The role of ABA in the freezing injury avoidance in two Hypericum species differing in frost tolerance and potential to synthesize hypericins. Plant Cell Tissue Organ Cult. 2015;122:45-56. DOI:

Bhuvaneswari R, Gan YY, Yee KK, Soo KC, Olivo M. Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma. Int J Mol Med. 2007;20(4):421-8. DOI:

Olivo M, Du HY, Bay BH. Hypericin lights up the way for the potential treatment of nasopharyngeal cancer by photodynamic therapy. Curr Clin Pharmacol. 2006;1(3):217-22. PMid:18666746 DOI:

Kaihong Z, Lijin J. Conversion of Hypocrellin A in alkaline and neutral media. Chin J Org Chem. 1989;9:252.

Estey EP, Brown K, Diwu Z, Liu J, Lown JW, Miller GG, et al. Hypocrellins as photosensitizers for photodynamic therapy: A screening evaluation and pharmacokinetic study. Cancer Chemother Pharmacol. 1996;37(4):343-50. PMid:8548880 DOI:

Zhenjun D, Lown JW. Hypocrellins and their use in photosensitization. Photochem Photobiol. 1990;52(3):609-16. PMid:2284353 DOI:

Wakdikar S. Global health care challenge: Indian experiences and new prescriptions. Electron J Biotechnol. 2004;7:214-20. DOI:

Bhutani KK, Gohil VM. Natural products drug discovery research in India: Status and appraisal. Indian J Exp Biol. 2010;48(3):199-207.

Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem. 2021;476(10):3785- 814. PMid:34106380 DOI:

Rathaur P, Raja W, Ramteke PW, Suchit AJ. Turmeric: The golden spice of life. Int J Pharm Sci Res. 2012;3:1987-94.

Tung BT, Nham DT, Hai NT, Thu DK. Curcuma longa, the Polyphenolic curcumin compound and pharmacological effects on liver. In: Watson RR, Preedy VR, editors. Dietary Interventions in Liver Disease. Ch. 10. Cambridge, MA, USA: Academic Press; 2019. p. 125-34. DOI:

Kazantzis KT, Koutsonikoli K, Mavroidi B, Zachariadis M, Alexiou P, Pelecanou M., Politopoulos K, et al. Curcumin derivatives as photosensitizers in photodynamic therapy: Photophysical properties and in vitro studies with prostate cancer cells. Photochem Photobiol Sci. 2010;19:193-206. DOI:

Dahl TA, McGowan WM, Shand MA, Srinivasan VS. Photokilling of bacteria by the natural dye curcumin. Arch Microbiol. 1989;151(2):183-5. PMid:2655550 DOI:

Haukvik T, Bruzell E, Kristensen S, Tønnesen HH. Photokilling of bacteria by curcumin in selected polyethylene glycol 400 (PEG

preparations. Studies on curcumin and curcuminoids, XLI. Pharmazie. 2010;65(8):600-6.

Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889-905. DOI:

Gupta S, Dwarakanath BS, Muralidhar K, Koru-Sengul T, Jain V. Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line. J Transl Med. 2010;8:43. PMid:20433757 DOI:

Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1-21. PMid:12659143 DOI:

Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Med Phys. 2008;35(7):3127-36. https://doi. org/10.1118/1.2937440 PMid:18697538 DOI:

Postiglione I, Chiaviello A, Palumbo G. Enhancing photodynamyc therapy efficacy by combination therapy: Dated, current and oncoming strategies. Cancers (Basel). 2011;3(2):2597-629. PMid:24212824 DOI:

Misiewicz K, Skupińska K, Graczyk A, Kasprzycka-Guttman T. Influence of protoporphyrin IX amino acid substituents on affinity to human breast adenocarcinoma MCF-7 cells. Biotechnic Histochem. 2009;84(1):17-23. DOI:

Morgan J, Oseroff AR. Mitochondria-based photodynamic anti- cancer therapy. Adv Drug Deliv Rev. 2001;49(1-2):71-86. PMid:11377804 DOI:

Merlin JL, Gautier H, Barberi-Heyob M, Teiten MH, Guillemin F. The multidrug resistance modulator SDZ-PSC 833 potentiates the photodynamic activity of chlorin e6 independently of P-glycoprotein in multidrug resistant human breast adenocarcinoma cells. Int J Oncol. 2003;22(4):733-9. DOI:

Li Y, Yu Y, Kang L, Lu Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int J Clin Exp Med. 2014;7(12):4867-76.

Kessel D, Poretz RD. Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME). Photochem Photobiol. 2000;71(1):94-6. https://doi. org/10.1562/0031-8655(2000)071<0094:sopibp>;2 PMid:10649895 DOI:

Kessel D, Woodburn K, Gomer CJ, Jagerovic N, Smith KM. Photosensitization with derivatives of chlorin p6. J Photochem Photobiol B. 1995;28(1):13-8. PMid:7791001 DOI:

Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 2015;34(4):643- 90. PMid:26516076 DOI:

Dang J, He H, Chen D, Yin L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci. 2017;5(8):1500-11. PMid:28681887 DOI:

van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers (Basel). 2017;9(2):19. PMid:28218708 DOI:

Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. PMid:17562483 DOI:

Moon YH, Kwon SM, Kim HJ, Jung KY, Park JH, Kim SA, et al. Efficient preparation of highly pure chlorin e6 and its photodynamic anti-cancer activity in a rat tumor model. Oncol Rep. 2009;22(5):1085-91. DOI:

Additional Files



How to Cite

Seyed MA, Mahmoud E. Photosensitizing Herbs as Potential Therapeutics: A Prospective Insights into their Mechanisms for the Development of Novel Drug Leads in War with Cancer and Other Human Diseases. Open Access Maced J Med Sci [Internet]. 2024 Apr. 25 [cited 2024 May 26];12:1-13. Available from:



Narrative Review Article