Herbal Bioactive Compounds for Skin Infections and Inflammatory Conditions

Authors

  • Michael Tirant Department of Dermatology, Hanoi Medical University, Hanoi, Viet Nam; Psoriasis Eczema Clinic and Research Centre, Melbourne, Australia https://orcid.org/0000-0002-7247-2125
  • Heather Tirant Psoriasis Eczema Clinic and Research Centre, Melbourne, Australia
  • Uwe Wollina Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany https://orcid.org/0000-0001-5933-2913

DOI:

https://doi.org/10.3889/oamjms.2024.11888

Keywords:

skin microbiome, Staphylococcus aureus, skin and soft tissue infections, antibiotics, antibiotic resistance, herbal compounds

Abstract

Skin microbiota is an integral part of the human immune system. Staphylococcus aureus is one of the essential components of the normal flora. Approximately 20–30% of healthy individuals are persistently colonized with S. aureus, whereas the remainders are considered low-level intermittent carriers. Despite these natural aspects of existence, S. aureus can be a major opportunistic human pathogen. This versatile microorganism can infect a variety of anatomical sites, causing a broad spectrum of pathologies ranging from superficial to invasive infections. It developed a variety of strategies to adopt to a changing microenvironment. This attributed to the emergence of resistance to antibiotics of different classes during the past six decades. Methicillin-resistant S. aureus (MRSA) was originally confined to health-care settings (health-care-associated MRSA). Later on, community-acquired MRSA was identified as another source of infections. Recent figures indicate that MRSA strains have been associated with approximately 75% of all S. aureus infections worldwide. Several guidelines have been published to establish an adequate treatment of skin and soft tissue infections (SSTIs) caused by MRSA strains. In the first part of this review, we focus on current treatment guidelines with a focus on medical drug therapy, but drug therapy has its own limitations. Recently, the interest in herbal remedies has greatly increased. There is growing evidence of antimicrobial activity of medicinal plants and their extracts. The second part of this review is dedicated to herbal compounds to circumvent antibiotic resistance. Herbal compounds may potentiate the action of antibiotics and restore the activities of antibacterial agents against which S. aureus has developed a drug resistance. Part 2 focuses on the role of S. aureus in pathology of the two major inflammatory skin diseases, i.e., atopic dermatitis (AD) and psoriasis. Finally, Part 3 provides an overview on natural compounds with antimicrobial activity against S. aureus and possible use in the treatment of SSTIs,

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Aryee A, Edgeworth JD. Carriage, clinical microbiology and transmission of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:1-19. https://doi.org/10.1007/82_2016_5 PMid:27097812 DOI: https://doi.org/10.1007/82_2016_5

van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199(12):1820-6. https://doi.org/10.1086/599119 PMid:19419332 DOI: https://doi.org/10.1086/599119

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751-62. https://doi.org/10.1016/S1473-3099(05)70295-4 PMid:16310147 DOI: https://doi.org/10.1016/S1473-3099(05)70295-4

Licitra G. Etymologia: Staphylococcus. Emerg Infect Dis. 2013;19:1553. https://doi.org/10.3201/eid1909.ET1909 DOI: https://doi.org/10.3201/eid1909.ET1909

Fitzgerald JR. Evolution of Staphylococcus aureus during human colonization and infection. Infect Genet Evol. 2014;21:542-7. https://doi.org/10.1016/j.meegid.2013.04.020 PMid:23624187 DOI: https://doi.org/10.1016/j.meegid.2013.04.020

Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:21-56. https://doi.org/10.1007/82_2016_3 PMid:27025380 DOI: https://doi.org/10.1007/82_2016_3

Frank AL, Marcinak JF, Mangat PD, Schreckenberger PC. Community-acquired and clindamycin- susceptible methicillin-resistant Staphylococcus aureus in children. Pediatr Infect Dis J. 1999;18(11):993-1000. https://doi. org/10.1097/00006454-199911000-00012 PMid:10571437 DOI: https://doi.org/10.1097/00006454-199911000-00012

Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279(8):593-598. https://doi.org/10.1001/jama.279.8.593 PMid:9486753 DOI: https://doi.org/10.1001/jama.279.8.593

Groom AV, Wolsey DH, Naimi TS, Smith K, Johnson S, Boxrud D, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001;286(10):1201-5. https://doi.org/10.1001/ jama.286.10.1201 PMid:11559265 DOI: https://doi.org/10.1001/jama.286.10.1201

Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community- associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med. 2008;51(3):291-8. https://doi.org/10.1016/j.annemergmed.2007.12.004 PMid:18222564 DOI: https://doi.org/10.1016/j.annemergmed.2007.12.004

From the centers for disease control and prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus --Minnesota and North Dakota, 1997-1999. JAMA. 1999;282(12):1123-5. PMid:21033181 DOI: https://doi.org/10.1001/jama.282.12.1123

King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med. 2006;144(5):309-17. https://doi.org/10.7326/0003-4819-144-5-200603070-00005 PMid:16520471 DOI: https://doi.org/10.7326/0003-4819-144-5-200603070-00005

Hayward A, Knott F, Petersen I, Livermore DM, Duckworth G, Islam A, et al. Increasing hospitalizations and general practice prescriptions for community-onset staphylococcal disease, England. Emerg Infect Dis. 2008;14(5):720-6. https://doi.org/10.3201/eid1405.070153 PMid:18439352 DOI: https://doi.org/10.3201/eid1405.070153

Vaska VL, Nimmo GR, Jones M, Grimwood K, Paterson DL. Increases in Australian cutaneous abscess hospitalisations: 1999-2008. Eur J Clin Microbiol Infect Dis. 2012;31(1):93-6. https://doi.org/10.1007/s10096-011-1281-3 PMid:21553298 DOI: https://doi.org/10.1007/s10096-011-1281-3

Schaumburg F, Alabi AS, Peters G, Becker K. New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect. 2014;20(7):589-96. https://doi.org/10.1111/1469-0691.12690 PMid:24861767 DOI: https://doi.org/10.1111/1469-0691.12690

Jurke A, Daniels-Haardt I, Silvis W, Berends MS, Glasner C, Becker K, et al. Changing epidemiology of meticillin-resistant Staphylococcus aureus in 42 hospitals in the Dutch-German border region, 2012 to 2016: Results of the search-and- follow-policy. Euro Surveill. 2019;24(15):1800244. https://doi.org/10.2807/1560-7917.ES.2019.24.15.1800244 PMid:30994105 DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.15.1800244

Huh K, Chung DR. Changing epidemiology of community- associated methicillin-resistant Staphylococcus aureus in the Asia-Pacific region. Expert Rev Anti Infect Ther. 2016;14(11):1007-22. https://doi.org/10.1080/14787210.2016.1236684 PMid:27645549 DOI: https://doi.org/10.1080/14787210.2016.1236684

Klein EY, Jiang W, Mojica N, Tseng KK, McNeill R, Cosgrove SE, et al. National costs associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010-2014. Clin Infect Dis. 2019;68(1):22-8. https://doi.org/10.1093/cid/ciy399 PMid:29762662 DOI: https://doi.org/10.1093/cid/ciy399

Fauci AS. The global challenge of infectious diseases: The evolving role of the National Institutes of Health in basic and clinical research. Nat Immunol. 2005;6(8):743-7. https://doi.org/10.1038/ni0805-743 PMid:16034426 DOI: https://doi.org/10.1038/ni0805-743

Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41(10):1373-406. https://doi.org/10.1086/497143 PMid:16231249 DOI: https://doi.org/10.1086/497143

Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. https://doi.org/10.1093/cid/ciu444 PMid:24973422 DOI: https://doi.org/10.1093/cid/ciu296

Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega. 2018;3(1):37-45. https://doi. org/10.1021/acsomega.7b01483 PMid:29399648 DOI: https://doi.org/10.1021/acsomega.7b01483

Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: A survey in a tertiary hospital in China. Int J Clin Exp Med. 2015;8(10):19436-41.

Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram- positive bacterial infections. Clin Infect Dis. 2000;30(1):146-51. https://doi.org/10.1086/313597 PMid:10619743 DOI: https://doi.org/10.1086/313597

Hashemian SM, Farhadi T, Ganjparvar M. Linezolid: A review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759-67. https://doi.org/10.2147/DDDT.S164515 PMid:29950810 DOI: https://doi.org/10.2147/DDDT.S164515

Yue J, Dong BR, Yang M, Chen X, Wu T, Liu GJ. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev. 2016;2016:CD008056. https://doi.org/10.1002/14651858.CD008056.pub3 PMid:26758498 DOI: https://doi.org/10.1002/14651858.CD008056.pub3

Li Y, Xu W. Efficacy and safety of linezolid compared with other treatments for skin and soft tissue infections: A meta-analysis. Biosci Rep. 2018;38(1):BSR20171125. https://doi.org/10.1042/BSR20171125 PMid:29229674 DOI: https://doi.org/10.1042/BSR20171125

Watkins RR, Lemonovich TL, File TM Jr. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): Place in therapy. Core Evid. 2012;7:131-43. https://doi.org/10.2147/CE.S33430 PMid:23271985 DOI: https://doi.org/10.2147/CE.S33430

Spížek J, Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. 2017;133:20-8. https://doi.org/10.1016/j. bcp.2016.12.001 PMid:27940264 DOI: https://doi.org/10.1016/j.bcp.2016.12.001

Frei CR, Miller ML, Lewis JS 2nd, Lawson KA, Hunter JM, Oramasionwu CU, et al. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J Am Board Fam Med. 2010;23(6):714-9. https://doi. org/10.3122/jabfm.2010.06.090270 PMid:21057066 DOI: https://doi.org/10.3122/jabfm.2010.06.090270

Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr., Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398-402. https://doi.org/10.1128/JCM.42.6.2398-2402.2004 PMid:15184410 DOI: https://doi.org/10.1128/JCM.42.6.2398-2402.2004

Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A. Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. Sci Rep. 2016;6:38184. https://doi.org/10.1038/ srep38184 PMid:27901075 DOI: https://doi.org/10.1038/srep38184

Miller WR, Bayer AS, Arias CA. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med. 2016;6(11):a026997. https://doi.org/10.1101/cshperspect.a026997 PMid:27580748 DOI: https://doi.org/10.1101/cshperspect.a026997

Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24(24):6253-68. https://doi. org/10.1016/j.bmc.2016.05.052 PMid:27288182 DOI: https://doi.org/10.1016/j.bmc.2016.05.052

Martone WJ, Lamp KC. Efficacy of daptomycin in complicated skin and skin-structure infections due to methicillin-sensitive and -resistant Staphylococcus aureus: Results from the CORE Registry. Curr Med Res Opin. 2006;22(12):2337-43. https://doi.org/10.1185/030079906X148427 PMid:17257448 DOI: https://doi.org/10.1185/030079906X148427

Bradley J, Glasser C, Patino H, Arnold SR, Arrieta A, Congeni B, et al. Daptomycin for complicated skin infections: A randomized trial. Pediatrics. 2017;139(3):e20162477. https:// doi.org/10.1542/peds.2016-2477 PMid:28202770 DOI: https://doi.org/10.1542/peds.2016-2477

Davis SL, McKinnon PS, Hall LM, Delgado G Jr., Rose W, Wilson RF, et al. Daptomycin versus vancomycin for complicated skin and skin structure infections: Clinical and economic outcomes. Pharmacotherapy. 2007;27:1611-8. https://doi.org/10.1592/phco.27.12.1611 PMid:18041881 DOI: https://doi.org/10.1592/phco.27.12.1611

Shoemaker DM, Simou J, Roland WE. A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag. 2006;2(2):169-74. https://doi.org/10.2147/tcrm.2006.2.2.169 PMid:18360590 DOI: https://doi.org/10.2147/tcrm.2006.2.2.169

Bland CM, Bookstaver PB, Lu ZK, Dunn BL, Rumley KF, Southeastern Research Group E. Musculoskeletal safety outcomes of patients receiving daptomycin with HMG- CoA reductase inhibitors. Antimicrob Agents Chemother. 2014;58(10):5726-31. https://doi.org/10.1128/AAC.02910-14 PMid:25022580 DOI: https://doi.org/10.1128/AAC.02910-14

van Bambeke F, Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 137 - Mechanisms of action. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases. 4th ed. Netherlands: Elsevier; 2017. p. 1162-80.e1. DOI: https://doi.org/10.1016/B978-0-7020-6285-8.00137-4

Shirley DA, Heil EL, Johnson JK. Ceftaroline fosamil: A brief clinical review. Infect Dis Ther. 2013;2(2):95-110. https://doi.org/10.1007/s40121-013-0010-x PMid:25134474 DOI: https://doi.org/10.1007/s40121-013-0010-x

Abbott IJ, Jenney AW, Jeremiah CJ, Mirčeta M, Kandiah JP, Holt DC, et al. Reduced in vitro activity of ceftaroline by etest among clonal complex 239 methicillin-resistant Staphylococcus aureus clinical strains from Australia. Antimicrob Agents Chemother. 2015;59(12):7837-41. https://doi.org/10.1128/ AAC.02015-15 PMid:26392488 DOI: https://doi.org/10.1128/AAC.02015-15

Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D, Baculik T, et al. CANVAS 2: The second Phase III, randomized, double- blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65 Suppl 4:v53-65. https://doi.org/10.1093/jac/dkq255 PMid:21115455 DOI: https://doi.org/10.1093/jac/dkq255

Dryden M, Zhang Y, Wilson D, Iaconis JP, Gonzalez J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother. 2016;71(12):3575-84. https://doi.org/10.1093/jac/dkw333 PMid:27585969 DOI: https://doi.org/10.1093/jac/dkw333

Cosimi RA, Beik N, Kubiak DW, Johnson JA. Ceftaroline for severe methicillin-resistant Staphylococcus aureus infections: A systematic review. Open Forum Infect Dis. 2017;4(2):ofx084. https://doi.org/10.1093/ofid/ofx084 PMid:28702467 DOI: https://doi.org/10.1093/ofid/ofx084

Kamath RS, Sudhakar D, Gardner JG, Hemmige V, Safar H, Musher DM. Guidelines vs actual management of skin and soft tissue infections in the emergency department. Open Forum Infect Dis. 2018;5(1):ofx188. https://doi.org/10.1093/ofid/ofx188 PMid:29354655 DOI: https://doi.org/10.1093/ofid/ofx188

Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010;300(2-3):98-103. https://doi.org/10.1016/j.ijmm.2009.08.013 PMid:19811948 DOI: https://doi.org/10.1016/j.ijmm.2009.08.013

Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother. 2006;57(3):450-60. https://doi.org/10.1093/jac/dki492 PMid:16449305 DOI: https://doi.org/10.1093/jac/dki492

Ploy MC, Grélaud C, Martin C, de Lumley L, Denis F. First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. Lancet. 1998;351(9110):1212. https://doi.org/10.1016/s0140-6736(05)79166-2 PMid:9643727 DOI: https://doi.org/10.1016/S0140-6736(05)79166-2

Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51(26):565-7.

Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99-139. https://doi.org/10.1128/CMR.00042-09 PMid:20065327 DOI: https://doi.org/10.1128/CMR.00042-09

McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269-81.

Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124(7):2836-40. https://doi.org/10.1172/JCI68834 PMid:24983424 DOI: https://doi.org/10.1172/JCI68834

Ślusarczyk R, Bielejewska A, Bociek A, Bociek M. Resistance to ceftaroline-2018 review. Eur J Biol Res. 2018;8:112-20.

Kelley WL, Jousselin A, Barras C, Lelong E, Renzoni A. Missense mutations in PBP2A affecting ceftaroline susceptibility detected in epidemic hospital-acquired methicillin-resistant Staphylococcus aureus clonotypes ST228 and ST247 in Western Switzerland archived since 1998. Antimicrob Agents Chemother. 2015;59(4):1922-30. https://doi.org/10.1128/AAC.04068-14 PMid:25583724 DOI: https://doi.org/10.1128/AAC.04068-14

Lahiri SD, Alm RA. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: Involvement of other PBPs. J Antimicrob Chemother. 2016;71(11):3050-7. http://doi.org/10.1093/jac/dkw282 PMid:27494915 DOI: https://doi.org/10.1093/jac/dkw282

Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One. 2016;11(2):e0149541. https://doi.org/10.1371/journal.pone.0149541 PMid:26890675 DOI: https://doi.org/10.1371/journal.pone.0149541

Rajan V, Kumar VG, Gopal S. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res. 2014;139(3):463-7.

Mittal G, Bhandari V, Gaind R, Rani V, Chopra S, Dawar R, et al. Linezolid resistant coagulase negative staphylococci (LRCoNS) with novel mutations causing blood stream infections (BSI) in India. BMC Infect Dis. 2019;19(1):717. https://doi.org/10.1186/ s12879-019-4368-6 PMid:31412801 DOI: https://doi.org/10.1186/s12879-019-4368-6

Miller K, Dunsmore CJ, Fishwick CW, Chopra I. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob Agents Chemother. 2008;52(5):1737-42. https://doi.org/10.1128/AAC.01015-07 PMid:18180348 DOI: https://doi.org/10.1128/AAC.01015-07

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. https://doi.org/10.1038/ nrmicro3380 PMid:25435309 DOI: https://doi.org/10.1038/nrmicro3380

Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis. 2017;17(1):483. https://doi.org/10.1186/s12879-017-2584-5 PMid:28693489 DOI: https://doi.org/10.1186/s12879-017-2584-5

Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M, Mishra NN, et al. Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. MBio. 2018;9(6):e01659-18. https://doi.org/10.1128/mBio.01659-18 PMid:30563904 DOI: https://doi.org/10.1128/mBio.01659-18

Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology (Reading). 2013;159(Pt 9):1868-77. https://doi.org/10.1099/mic.0.069898-0 PMid:23858088 DOI: https://doi.org/10.1099/mic.0.069898-0

Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34(2):261-80. https://doi.org/10.1007/ s00281-011-0292-6 PMid:22057887 DOI: https://doi.org/10.1007/s00281-011-0292-6

Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol. 2015;185(6):1518-27. https://doi.org/10.1016/j.ajpath.2014.11.030 PMid:25749135 DOI: https://doi.org/10.1016/j.ajpath.2014.11.030

Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-75. https://doi.org/10.1038/nri3399 PMid:23435331 DOI: https://doi.org/10.1038/nri3399

Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505-18. https://doi.org/10.1038/nri3010 PMid:21720387 DOI: https://doi.org/10.1038/nri3010

Panton P, Valentine F. Staphylococcal toxin. Lancet. 1932;219(5662):506-8. DOI: https://doi.org/10.1016/S0140-6736(01)24468-7

Costello ME, Huygens F. Diversity of community acquired MRSA carrying the PVL gene in Queensland and New South Wales, Australia. Eur J Clin Microbiol Infect Dis. 2011;30(10):1163-7. https://doi.org/10.1007/s10096-011-1203-4 PMid:21424382 DOI: https://doi.org/10.1007/s10096-011-1203-4

Harch SA, MacMorran E, Tong SY, Holt DC, Wilson J, Athan E, et al. High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine leucocidin clones ST93-MRSA and CC121- MSSA. BMC Infect Dis. 2017;17(1):405. https://doi.org/10.1186/s12879-017-2460-3 PMid:28592231 DOI: https://doi.org/10.1186/s12879-017-2460-3

Hu Q, Cheng H, Yuan W, Zeng F, Shang W, Tang D, et al. Panton-Valentine leukocidin (PVL)-positive health care- associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J Clin Microbiol. 2015;53(1):67-72. https://doi.org/10.1128/JCM.01722-14 PMid:25339405 DOI: https://doi.org/10.1128/JCM.01722-14

Immergluck LC, Jain S, Ray SM, Mayberry R, Satola S, Parker TC, et al. Risk of skin and soft tissue infections among children found to be Staphylococcus aureus MRSA USA300 carriers. West J Emerg Med. 2017;18(2):201-212. https://doi.org/10.5811/westjem.2016.10.30483 PMid:28210352 DOI: https://doi.org/10.5811/westjem.2016.10.30483

Ma J, Gulbins E, Edwards MJ, Caldwell CC, Fraunholz M, Becker KA. Staphylococcus aureus -toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell Physiol Biochem. 2017;43(6):2170-84. https://doi.org/10.1159/000484296 PMid:29069651 DOI: https://doi.org/10.1159/000484296

Montgomery CP, Boyle-Vavra S, Daum RS. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One. 2010;5(12):e15177. https://doi.org/10.1371/journal.pone.0015177 PMid:21151999 DOI: https://doi.org/10.1371/journal.pone.0015177

Weiss EC, Zielinska A, Beenken KE, Spencer HJ, Daily SJ, Smeltzer MS. Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob Agents Chemother. 2009;53(10):4096-102. https://doi.org/10.1128/ AAC.00484-09 PMid:19651914 DOI: https://doi.org/10.1128/AAC.00484-09

Chen Y, Yeh AJ, Cheung GY, Villaruz AE, Tan VY, Joo HS, et al. Basis of virulence in a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain. J Infect Dis. 2015;211(3):472-80. https://doi.org/10.1093/infdis/jiu462 PMid:25139021 DOI: https://doi.org/10.1093/infdis/jiu462

Hilliard JJ, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones- Nelson O, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother. 2015;59:299-309. https://doi.org/10.1128/AAC.03918-14 PMid:25348518 DOI: https://doi.org/10.1128/AAC.03918-14

Le VT, Tkaczyk C, Chau S, Rao RL, Dip EC, Pereira- Franchi EP, et al. Critical role of alpha-toxin and protective effects of its neutralization by a human antibody in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2016;60(10):5640-8. https://doi.org/10.1128/AAC.00710-16 PMid:27401576 DOI: https://doi.org/10.1128/AAC.00710-16

Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M, et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. 2013;15(8):1427-37. https://doi.org/10.1111/cmi.12130 PMid:23470014 DOI: https://doi.org/10.1111/cmi.12130

Berlon NR, Qi R, Sharma-Kuinkel BK, Joo HS, Park LP, George D, et al. Clinical MRSA isolates from skin and soft tissue infections show increased in vitro production of phenol soluble modulins. J Infect. 2015;71:447-57. https://doi.org/10.1016/j.jinf.2015.06.005 PMid:26079275 DOI: https://doi.org/10.1016/j.jinf.2015.06.005

Richardson JR, Armbruster NS, Günter M, Biljecki M, Klenk J, Heumos S, et al. PSM peptides from community-associated methicillin-resistant Staphylococcus aureus impair the adaptive immune response via modulation of dendritic cell subsets in vivo. Front Immunol. 2019;10:995-5. https://doi.org/10.3389/fimmu.2019.00995 PMid:31134074 DOI: https://doi.org/10.3389/fimmu.2019.00995

Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510-4. https://doi.org/10.1038/nm1656 PMid:17994102 DOI: https://doi.org/10.1038/nm1656

Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 2009;5:e1000533. https://doi.org/10.1371/journal.ppat.1000533 DOI: https://doi.org/10.1371/journal.ppat.1000533

Nakaminami H, Ito T, Han X, Ito A, Matsuo M, Uehara Y, et al. First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. FEMS Microbiol Lett. 2017;364(16):fnx171. https://doi.org/10.1093/femsle/fnx171 PMid:28873947 DOI: https://doi.org/10.1093/femsle/fnx171

Viela F, Prystopiuk V, Leprince A, Mahillon J, Speziale P, Pietrocola G, et al. Binding of Staphylococcus aureus protein A to von willebrand factor is regulated by mechanical force. mBio. 2019;10(2):e00555-19. https://doi.org/10.1128/mBio.00555-19 PMid:31040240 DOI: https://doi.org/10.1128/mBio.00555-19

Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott DP, Gardner DJ, et al. Contribution of Staphylococcus aureus coagulases and clumping factor A to abscess formation in a rabbit model of skin and soft tissue infection. PLoS One. 2016;11(6):e0158293. https://doi.org/10.1371/journal.pone.0158293 PMid:27336691 DOI: https://doi.org/10.1371/journal.pone.0158293

Lacey KA, Mulcahy ME, Towell AM, Geoghegan JA, McLoughlin RM. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog. 2019;15(4):e1007713. https://doi.org/10.1371/journal.ppat.1007713 PMid:31009507 DOI: https://doi.org/10.1371/journal.ppat.1007713

Kwiecinski J, Jin T, Josefsson E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS. 2014;122(12):1240-50. https://doi.org/10.1111/apm.12295 PMid:25051890 DOI: https://doi.org/10.1111/apm.12295

Edwards AM, Potter U, Meenan NA, Potts JR, Massey RC. Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA. PLoS One. 2011;6(4):e18899. https://doi.org/10.1371/journal.pone.0018899 PMid:21526122 DOI: https://doi.org/10.1371/journal.pone.0018899

Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol. 2015;6:1174. https://doi.org/10.3389/fmicb.2015.01174 PMid:26579084 DOI: https://doi.org/10.3389/fmicb.2015.01174

Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014;10(6):e1004174. https://doi.org/10.1371/journal. ppat.1004174 PMid:24945495 DOI: https://doi.org/10.1371/journal.ppat.1004174

Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun. 2011;79(5):1927-35. https://doi.org/10.1128/ IAI.00046-11 PMid:21402769 DOI: https://doi.org/10.1128/IAI.00046-11

Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin HL. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339-47. https://doi.org/10.1016/j.micpath.2018.07.002 PMid:30057355 DOI: https://doi.org/10.1016/j.micpath.2018.07.002

Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin- resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019;10(8):1231-41. https://doi.org/10.1039/c9md00044e PMid:31534648 DOI: https://doi.org/10.1039/C9MD00044E

Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis. 2012;4(4):193-198. https://doi.org/10.4103/0974-777X.103896 PMid:23326076 DOI: https://doi.org/10.4103/0974-777X.103896

Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067 PMid:30619958 DOI: https://doi.org/10.1016/j.heliyon.2018.e01067

Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. https://doi.org/10.1128/MMBR.00013-14 PMid:25184564 DOI: https://doi.org/10.1128/MMBR.00013-14

Mirani ZA, Aziz M, Khan SI. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. J Antibiot (Tokyo). 2015;68(2):98-105. https://doi.org/10.1038/ja.2014.115 PMid:25160508 DOI: https://doi.org/10.1038/ja.2014.115

Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem. 2018;10(7):779-94. https://doi.org/10.4155/fmc-2017-0199 PMid:29569952 DOI: https://doi.org/10.4155/fmc-2017-0199

Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018;73(8):2003-20. https://doi.org/10.1093/jac/dky042 PMid:29506149 DOI: https://doi.org/10.1093/jac/dky042

Barsoumian AE, Mende K, Sanchez CJ Jr., Beckius ML, Wenke JC, Murray CK, et al. Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect Dis. 2015;15:223. https://doi.org/10.1186/s12879-015-0972-2 PMid:26049931 DOI: https://doi.org/10.1186/s12879-015-0972-2

Romanò CL, Trentinaglia MT, De Vecchi E, Logoluso N, George DA, Morelli I, et al. Cost-benefit analysis of antibiofilm microbiological techniques for peri-prosthetic joint infection diagnosis. BMC Infect Dis. 2018;18(1):154. https://doi.org/10.1186/s12879-018-3050-8 PMid:29609540 DOI: https://doi.org/10.1186/s12879-018-3050-8

Edmiston CE, McBain AJ, Kiernan M, Leaper DJ. A narrative review of microbial biofilm in postoperative surgical site infections: Clinical presentation and treatment. J Wound Care. 2016;25(12):693-702. https://doi.org/10.12968/jowc.2016.25.12.693 PMID: 27974013 DOI: https://doi.org/10.12968/jowc.2016.25.12.693

Kwiecinski J, Kahlmeter G, Jin T. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections. Curr Microbiol. 2015;70(5):698-703. https://doi.org/10.1007/s00284-014-0770-x PMid:25586078 DOI: https://doi.org/10.1007/s00284-014-0770-x

Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J. Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: Role of fibrinogen and fibrin. J Dermatol Sci. 1997;16(1):2-10. https://doi.org/10.1016/s0923-1811(97)00611-7 PMid:9438901 DOI: https://doi.org/10.1016/S0923-1811(97)00611-7

Shin K, Yun Y, Yi S, Lee HG, Cho JC, Suh KD, et al. Biofilm- forming ability of Staphylococcus aureus strains isolated from human skin. J Dermatol Sci. 2013;71(2):130-7. https://doi.org/10.1016/j.jdermsci.2013.04.004 PMid:23664186 DOI: https://doi.org/10.1016/j.jdermsci.2013.04.004

Kwiecinski JM, Jacobsson G, Horswill AR, Josefsson E, Jin T. Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infect Dis (Lond). 2019;51(6):446-51. https://doi.org/10.1080/23744235.2019.159 3499 PMid:30985241 DOI: https://doi.org/10.1080/23744235.2019.1593499

Esposito S, Bassetti M, Borre S, Bouza E, Dryden M, Fantoni M, et al. Diagnosis and management of skin and soft- tissue infections (SSTI): A literature review and consensus statement on behalf of the Italian Society of Infectious Diseases and International Society of Chemotherapy. J Chemother. 2011;23(5):251-262. https://doi.org/10.1179/joc.2011.23.5.251 PMid:22005055 DOI: https://doi.org/10.1179/joc.2011.23.5.251

Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity. 2019;50(3):552-65. https://doi.org/10.1016/j.immuni.2019.02.023 PMid:30893586 DOI: https://doi.org/10.1016/j.immuni.2019.02.023

Matejuk A. Skin immunity. Arch Immunol Ther Exp (Warsz). 2018;66(1):45-54. https://doi.org/10.1007/s00005-017-0477-3 PMid:28623375 DOI: https://doi.org/10.1007/s00005-017-0477-3

Ibrahim F, Khan T, Pujalte GG. Bacterial skin infections. Prim Care. 2015;42(4):485-99. https://doi.org/10.1016/j.pop.2015.08.001 PMid:26612370 DOI: https://doi.org/10.1016/j.pop.2015.08.001

Sun L, Liu W, Zhang LJ. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J Immunol Res. 2019;2019:1824624. https://doi.org/10.1155/2019/1824624 PMid:31815151 DOI: https://doi.org/10.1155/2019/1824624

Bitschar K, Wolz C, Krismer B, Peschel A, Schittek B. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. J Dermatol Sci. 2017;87(3):215-20. https://doi.org/10.1016/j.jdermsci.2017.06.003 PMid:28655473 DOI: https://doi.org/10.1016/j.jdermsci.2017.06.003

Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289-301. https://doi.org/10.1038/nri3646 PMid:24722477 DOI: https://doi.org/10.1038/nri3646

Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. J Immunol. 2018;200(12):3871- 80. https://doi.org/10.4049/jimmunol.1701574 PMid:29866769 DOI: https://doi.org/10.4049/jimmunol.1701574

Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469-99. https://doi.org/10.1146/annurev-immunol-051116-052215 PMid:28226228 DOI: https://doi.org/10.1146/annurev-immunol-051116-052215

Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41(2):139-57. https://doi.org/10.1093/femsre/fuw042 PMid:27965320 DOI: https://doi.org/10.1093/femsre/fuw042

Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis. 2016;74(6):ftw060. https://doi.org/10.1093/femspd/ftw060 PMid:27354296 DOI: https://doi.org/10.1093/femspd/ftw060

Battistelli M, Malatesta M, Meschini S. Oxidative stress to promote cell death or survival. Oxid Med Cell Longev. 2016;2016:2054650. https://doi.org/10.1155/2016/2054650 PMid:26941887 DOI: https://doi.org/10.1155/2016/2054650

Chakraborty SP, Roy S. In vitro Staphylococcus aureus -induced oxidative stress in mice murine peritoneal macrophages: A duration-dependent approach. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S298-304. https://doi.org/10.12980/APJTB.4.2014B341 PMid:25183101 DOI: https://doi.org/10.12980/APJTB.4.2014B341

Affonso RC, Voytena AP, Fanan S, Pitz H, Coelho DS, Horstmann AL, et al. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev. 2016;2016:1923754. https://doi.org/10.1155/2016/1923754 PMid:27965732 DOI: https://doi.org/10.1155/2016/1923754

Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, et al. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog. 2014;10(2):e1003918. https://doi.org/10.1371/journal.ppat.1003918 PMid:24586149 DOI: https://doi.org/10.1371/journal.ppat.1003918

Grosser MR, Weiss A, Shaw LN, Richardson AR. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol. 2016;198(15):2043-55. https://doi.org/10.1128/JB.00229-16 PMid:27185828 DOI: https://doi.org/10.1128/JB.00229-16

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94. https://doi.org/10.1159/000454919 PMid:27974711 DOI: https://doi.org/10.1159/000454919

George L, Bavya MC, Rohan KV, Srivastava R. A therapeutic polyelectrolyte-vitamin C nanoparticulate system in polyvinyl alcohol-alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces. 2017;160:315-24. https://doi.org/10.1016/j.colsurfb.2017.09.030 PMid:28950196 DOI: https://doi.org/10.1016/j.colsurfb.2017.09.030

Su X, Liu X, Wang S, Li B, Pan T, Liu D, et al. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns. 2017;43(4):830-8. https://doi.org/10.1016/j.burns.2016.10.010 PMid:28040363 DOI: https://doi.org/10.1016/j.burns.2016.10.010

Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann Surg. 2019;271(6):1174-85. https://doi.org/10.1097/SLA.0000000000003053 PMid:30614873 DOI: https://doi.org/10.1097/SLA.0000000000003053

Lone AG, Atci E, Renslow R, Beyenal H, Noh S, Fransson B, et al. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect Immun. 2015;83(6):2531-41. https://doi.org/10.1128/IAI.03075-14 PMid:25847960 DOI: https://doi.org/10.1128/IAI.03075-14

Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-8. https://doi.org/10.1038/nature14052 PMid:25539086 DOI: https://doi.org/10.1038/nature14052

Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, VillarinoAV, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(4):784-96.e18. https://doi.org/10.1016/j.cell.2017.12.033 PMid:29358051 DOI: https://doi.org/10.1016/j.cell.2017.12.033

Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207-15. https://doi.org/10.4168/aair.2018.10.3.207 PMid:29676067 DOI: https://doi.org/10.4168/aair.2018.10.3.207

Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1-8. https://doi.org/10.1016/j.coi.2016.05.002 PMid:27206013 DOI: https://doi.org/10.1016/j.coi.2016.05.002

Friedman BC, Goldman RD. Anti-staphylococcal treatment in dermatitis. Can Fam Physician. 2011;57(6):669-71.

Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850-9. https://doi.org/10.1101/gr.131029.111 PMid:22310478 DOI: https://doi.org/10.1101/gr.131029.111

Tauber M, Balica S, Hsu CY, Jean-Decoster C, Lauze C, Redoules D, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137(4):1272-74.e3. https://doi.org/10.1016/j.jaci.2015.07.052 PMid:26559326 DOI: https://doi.org/10.1016/j.jaci.2015.07.052

Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE, et al. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85(6):e00994-16. https://doi.org/10.1128/IAI.00994-16 PMid:28373353 DOI: https://doi.org/10.1128/IAI.00994-16

Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49-62. https://doi.org/10.1038/nrmicro3161 PMid:24336184 DOI: https://doi.org/10.1038/nrmicro3161

Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8(12):e1003092. https://doi.org/10.1371/journal.ppat.1003092 PMid:23300445 DOI: https://doi.org/10.1371/journal.ppat.1003092

Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2:52. https://doi.org/10.3389/fcimb.2012.00052 PMid:22919643 DOI: https://doi.org/10.3389/fcimb.2012.00052

Krakauer T, Pradhan K, Stiles BG. Staphylococcal superantigens spark host-mediated danger signals. Front Immunol. 2016;7:23. https://doi.org/10.3389/fimmu.2016.00023 PMid:26870039 DOI: https://doi.org/10.3389/fimmu.2016.00023

Schlievert PM, Case LC, Strandberg KL, Abrams BB, Leung DY. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clin Infect Dis. 2008;46(10):1562-7. https://doi.org/10.1086/586746 PMid:18419342 DOI: https://doi.org/10.1086/586746

Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012;129(2):426-33.e4338. https://doi.org/10.1016/j.jaci.2011.10.042 PMid:22177328 DOI: https://doi.org/10.1016/j.jaci.2011.10.042

Brauweiler AM, Goleva E, Leung DY. Interferon- protects from staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J Invest Dermatol. 2016;136(3):658-64. https://doi.org/10.1016/j.jid.2015.12.006 PMid:27015454 DOI: https://doi.org/10.1016/j.jid.2015.12.006

Jun SH, Lee JH, Kim SI, Choi CW, Park TI, Jung HR, et al. Staphylococcus aureus -derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy. 2017;47(1):85-96. https://doi.org/10.1111/cea.12851 PMid:27910159 DOI: https://doi.org/10.1111/cea.12851

Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz- Planillo R, Hasegawa M, et al. Staphylococcus -toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397-401. https://doi.org/10.1038/nature12655 PMid:24172897 DOI: https://doi.org/10.1038/nature12655

Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7(1):8689. https://doi.org/10.1038/s41598-017-08046-2 PMid:28821865 DOI: https://doi.org/10.1038/s41598-017-08046-2

Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(12):81. https://doi.org/10.1007/s11882-017-0750-x PMid:29063212 DOI: https://doi.org/10.1007/s11882-017-0750-x

Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. https://doi.org/10.1038/s41598-018-27421-1 PMid:29955077 DOI: https://doi.org/10.1038/s41598-018-27421-1

Eriksson S, van der Plas MJ, Mörgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177(2):513-21. https://doi.org/10.1111/bjd.15410 PMid:28238217 DOI: https://doi.org/10.1111/bjd.15410

Wong SM, Ng TG, Baba R. Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol. 2013;40(11):874-80. https://doi.org/10.1111/1346-8138.12265 PMid:24111816 DOI: https://doi.org/10.1111/1346-8138.12265

Doudoulakakis A, Spiliopoulou I, Spyridis N, Giormezis N, Kopsidas J, Militsopoulou M, et al. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J Clin Microbiol. 2017;55(8):2529-37. https://doi.org/10.1128/JCM.00406-17 PMid:28592549 DOI: https://doi.org/10.1128/JCM.00406-17

Leung DY. Can antibiotics be harmful in atopic dermatitis? Br J Dermatol. 2018;179(4):807-8. https://doi.org/10.1111/bjd.17023 PMid:30318811 DOI: https://doi.org/10.1111/bjd.17023

Błażewicz I, Jaśkiewicz M, Bauer M, Piechowicz L, Nowicki RJ, Kamysz W, et al. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: A reason for increasing resistance to antibiotics? Postepy Dermatol Alergol. 2017;34(6):553-60. https://doi.org/10.5114/ada.2017.72461 PMid:29422820 DOI: https://doi.org/10.5114/ada.2017.72461

Cavalcante FS, Abad ED, Lyra YC, Saintive SB, Ribeiro M, Ferreira DC, et al. High prevalence of methicillin resistance and PVL genes among Staphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis. Braz J Med Biol Res. 2015;48(7):588-94. https://doi.org/10.1590/1414-431X20154221 PMid:25992644 DOI: https://doi.org/10.1590/1414-431x20154221

Jagadeesan S, Kurien G, Divakaran MV, Sadanandan SM, Sobhanakumari K, Sarin A. Methicillin-resistant Staphylococcus aureus colonization and disease severity in atopic dermatitis: A cross-sectional study from South India. Indian J Dermatol Venereol Leprol. 2014;80(3):229-34. https://doi.org/10.4103/0378-6323.132250 PMid:24823400 DOI: https://doi.org/10.4103/0378-6323.132250

Jung MY, Chung JY, Lee HY, Park J, Lee DY, Yang JM. Antibiotic susceptibility of Staphylococcus aureus in atopic dermatitis: Current prevalence of methicillin-resistant Staphylococcus aureus in Korea and treatment strategies. Ann Dermatol. 2015;27(4):398-403. https://doi.org/10.5021/ad.2015.27.4.398 PMid:26273155 DOI: https://doi.org/10.5021/ad.2015.27.4.398

Błażewicz I, Jaśkiewicz M, Piechowicz L, Neubauer D, Nowicki RJ, Kamysz W, et al. Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from patients with atopic dermatitis. Postepy Dermatol Alergol. 2018;35(1):74-82. https://doi.org/10.5114/ada.2018.62141 PMid:29599675 DOI: https://doi.org/10.5114/ada.2018.62141

World Health Organization. Global Report on Psoriasis. Geneva: WHO; 2016. Available from: https://apps.who.int/iris/ handle/10665/204417 [Last accessed on 2020 Jan 02].

BoehnckeWH,SchönMP.Psoriasis.Lancet.2015;386(997):983-94. https://doi.org/10.1016/S0140-6736(14)61909-7 PMid:26025581 DOI: https://doi.org/10.1016/S0140-6736(14)61909-7

Balci DD, Duran N, Ozer B, Gunesacar R, Onlen Y, Yenin JZ. High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur J Dermatol. 2009;19(3):238-42. https://doi.org/10.1684/ejd.2009.0663 PMid:19286488 DOI: https://doi.org/10.1684/ejd.2009.0663

Zhang J, Shaver C, Neidig L, Jones K, Cusack CA, Allen HB. Toll-Like receptor 2 and its relationship with Streptococcus in psoriasis. Skinmed. 2017;15(1):27-30.

Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154. https://doi.org/10.1186/s40168-018-0533-1 PMid:30185226 DOI: https://doi.org/10.1186/s40168-018-0533-1

Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10(1):4703. https://doi.org/10.1038/s41467-019-12253-y PMid:31619666 DOI: https://doi.org/10.1038/s41467-019-12253-y

Ryu S, Broussard L, Youn C, Song B, Norris D, Armstrong CA, et al. Therapeutic effects of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in psoriatic keratinocytes. Chonnam Med J. 2019;55(2):75-85. https://doi.org/10.4068/cmj.2019.55.2.75 PMid:31161119 DOI: https://doi.org/10.4068/cmj.2019.55.2.75

Göçmen Jülide Sedef, Sahiner N, Koçak M, Karahan ZC. PCR investigation of panton-valentine leukocidin, enterotoxin, exfoliative toxin, and agr genes in Staphylococcus aureus strains isolated from psoriasis patients. Turk J Med Sci. 2015;45(6):1345-52. DOI: https://doi.org/10.3906/sag-1408-54

Ng CY, Huang YH, Chu CF, Wu TC, Liu SH. Risks for Staphylococcus aureus colonization in patients with psoriasis: A systematic review and meta-analysis. Br J Dermatol. 2017;177(4):967-77. https://doi.org/10.1111/bjd.15366 PMid:28160277 DOI: https://doi.org/10.1111/bjd.15366

Coia JE, Duckworth GJ, Edwards DI, Farrington M, Fry C, Humphreys H, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63 Suppl 1:S1-44. https://doi.org/10.1016/j.jhin.2006.01.001 PMid:16581155 DOI: https://doi.org/10.1016/j.jhin.2006.01.001

Rahman M, Noble W, Cookson B, Baird D, Coia J. Mupirocin-resistant Staphylococcus aureus. Lancet. 1987;330:387-8. DOI: https://doi.org/10.1016/S0140-6736(87)92398-1

Pérez-Roth E, Claverie-Martín F, Batista N, Moreno A, Méndez-Alvarez S. Mupirocin resistance in methicillin- resistant Staphylococcus aureus clinical isolates in a Spanish hospital. Co-application of multiplex PCR assay and conventional microbiology methods. Diagn Microbiol Infect Dis. 2002;43(2):123-8. https://doi.org/10.1016/s0732-8893(02)00388-7 PMid:12088619 DOI: https://doi.org/10.1016/S0732-8893(02)00388-7

Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother. 2015;59(6):3350-6. https://doi.org/10.1128/AAC.00079-15 PMid:25824213 DOI: https://doi.org/10.1128/AAC.00079-15

Sendker J, Sheridan H. History and current status of herbal medicines. In: Pelkonen O, Duez P, Vuorela PM, Vuorela H, editors. Toxicology of Herbal Products. Cham: Springer International Publishing; 2017. p. 11-27. DOI: https://doi.org/10.1007/978-3-319-43806-1_2

Kumar S, Dobos GJ, Rampp T. The significance of ayurvedic medicinal plants. J Evid Based Complementary Altern Med. 2017;22(3):494-501. https://doi.org/10.1177/2156587216671392 PMid:27707902 DOI: https://doi.org/10.1177/2156587216671392

Hu J, Zhang J, Zhao W, Zhang Y, Zhang L, Shang H. Cochrane systematic reviews of Chinese herbal medicines: An overview. PLoS One. 2011;6(12):e28696. https://doi.org/10.1371/journal.pone.0028696 PMid:22174870 DOI: https://doi.org/10.1371/journal.pone.0028696

Chevallier A. Encyclopedia of Herbal Medicine: 550 Herbs and Remedies for Common Ailments: Penguin. United Kingdom: DK Publishing; 2016.

Clarke P. Aboriginal healing practices and Australian bush medicine. J Anthropol Soc South Aust. 2008;33:3-38.

Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117(19):12415-74. https://doi.org/10.1021/acs.chemrev.7b00283 PMid:28953368 DOI: https://doi.org/10.1021/acs.chemrev.7b00283

Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29(9):1007-21. https://doi.org/10.1039/c2np20035j PMid:22786554 DOI: https://doi.org/10.1039/c2np20035j

Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82(1):34-7. https://doi.org/10.1016/j.fitote.2010.11.016 PMid:21075177 DOI: https://doi.org/10.1016/j.fitote.2010.11.016

Roberts SC. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol. 2007;3(7):387-95. https://doi. org/10.1038/nchembio.2007.8 PMid:17576426 DOI: https://doi.org/10.1038/nchembio.2007.8

Griffin SG, Wyllie SG, Markham JL, Leach DN. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J. 1999;14:322-32. DOI: https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4

Burt S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid:15246235 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J Agric Food Chem. 2014;62(31):7652-70. https://doi.org/10.1021/jf5023862 PMid:25058878 DOI: https://doi.org/10.1021/jf5023862

Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, et al. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett. 2004;230(2):191-5. https://doi.org/10.1016/S0378-1097(03)00890-5 PMid:14757239 DOI: https://doi.org/10.1016/S0378-1097(03)00890-5

Cho Y, Lee HJ. Antibacterial effects of carvacrol against Staphylococcus aureus and Escherichia coli O157: H7. J Biomed Res. 2014;15:117-22. DOI: https://doi.org/10.12729/jbr.2014.15.3.117

García-Salinas S, Elizondo-Castillo H, Arruebo M, Mendoza G, Irusta S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules. 2018;23(6):1399. https://doi.org/10.3390/molecules23061399 PMid:29890713 DOI: https://doi.org/10.3390/molecules23061399

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74. https://doi.org/10.3390/ph6121451 PMid:24287491 DOI: https://doi.org/10.3390/ph6121451

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863-70. https://doi.org/10.1021/jf0636465 PMid:17497876 DOI: https://doi.org/10.1021/jf0636465

Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun. 2000;68(6):3548-53. https://doi.org/10.1128/iai.68.6.3548-3553.2000 PMid:10816510 DOI: https://doi.org/10.1128/IAI.68.6.3548-3553.2000

Mouwakeh A, Kincses A, Nové M, Mosolygó T, Mohácsi- Farkas C, Kiskó G, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res. 2019;33(4):1010-8. https://doi.org/10.1002/ptr.6294 PMid:30672036 DOI: https://doi.org/10.1002/ptr.6294

Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631. https://doi.org/10.3390/molecules24142631 PMid:31330955 DOI: https://doi.org/10.3390/molecules24142631

Vasconcelos SE, Melo HM, Cavalcante TT, Júnior FE, de Carvalho MG, Menezes FG, et al. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2017;17(1):462. https://doi.org/10.1186/s12906-017-1968-9 PMid:28915875 DOI: https://doi.org/10.1186/s12906-017-1968-9

Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, et al. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling. 2018;34(6):630-56. https://doi.org/10.1080/08927014.2018.1480756 PMid:30067078 DOI: https://doi.org/10.1080/08927014.2018.1480756

Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:12. https://doi.org/10.3389/fmicb.2012.00012 PMid:22291693 DOI: https://doi.org/10.3389/fmicb.2012.00012

Mir M, Ahmed N, Permana AD, Rodgers AM, Donnelly RF, Rehman AU. Enhancement in site-specific delivery of carvacrol against methicillin resistant Staphylococcus aureus induced skin infections using enzyme responsive nanoparticles: A proof of concept study. Pharmaceutics. 2019;11(11):606. https://doi.org/10.3390/pharmaceutics11110606 PMid:31766227 DOI: https://doi.org/10.3390/pharmaceutics11110606

Goodner K, Mahattanatawee K, Plotto A, Sotomayor J, Jordan M. Aromatic profiles of Thymus hyemalis and Spanish T. vulgaris essential oils by GC–MS/GC–O. Ind Crops Prod. 2006;24:264-8. DOI: https://doi.org/10.1016/j.indcrop.2006.06.006

Figiel A, Szumny A, Gutiérrez-Ortíz A, Carbonell-Barrachina ÁA. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J Food Eng. 2010;98:240-7. https://doi.org/10.1016/j.jfoodeng.2010.01.002 DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.002

Deb DD, Parimala G, Saravana Devi S, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact. 2011;193(1):97-106. https://doi.org/10.1016/j.cbi.2011.05.009 PMid:21640085 DOI: https://doi.org/10.1016/j.cbi.2011.05.009

Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MD, Segura-CarreteroA, et al. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res. 2018;32(9):1688- 706. https://doi.org/10.1002/ptr.6109 PMid:29785774 DOI: https://doi.org/10.1002/ptr.6109

Andersen A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int J Toxicol. 2006;25 Suppl 1:29-127. https://doi.org/10.1080/10915810600716653 PMid:16835130 DOI: https://doi.org/10.1080/10915810600716653

Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: A comparative study. Eur Arch Paediatr Dent. 2015;16(6):449-54. https://doi.org/10.1007/s40368-015-0192-x PMid:26059497 DOI: https://doi.org/10.1007/s40368-015-0192-x

Kifer D, Mužinić V, Klarić MŠ. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth. J Antibiot (Tokyo). 2016;69(9):689-96. https://doi.org/10.1038/ja.2016.10 PMid:26883392 DOI: https://doi.org/10.1038/ja.2016.10

Hamoud R, Zimmermann S, Reichling J, Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine. 2014;21(4):443-7. https://doi.org/10.1016/j.phymed.2013.10.016 PMid:24262063 DOI: https://doi.org/10.1016/j.phymed.2013.10.016

Lv F, Liang H, Yuan Q, Li C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int. 2011;44(9):3057-64. https://doi.org/10.1016/j.foodres.2011.07.030 DOI: https://doi.org/10.1016/j.foodres.2011.07.030

Zhou W, Wang Z, Mo H, Zhao Y, Li H, Zhang H, et al. Thymol mediates bactericidal activity against Staphylococcus aureus by targeting an aldo-keto reductase and consequent depletion of NADPH. J Agric Food Chem. 2019;67:8382-92. https://doi.org/10.1021/acs.jafc.9b03517 PMid:31271032 DOI: https://doi.org/10.1021/acs.jafc.9b03517

Yuan Z, Dai Y, Ouyang P, Rehman T, Hussain S, Zhang T, et al. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms. 2020;8(1):99. https://doi.org/10.3390/microorganisms8010099 PMid:31936809 DOI: https://doi.org/10.3390/microorganisms8010099

Kwon HI, Jeong NH, Jun SH, Son JH, Kim S, Jeon H, et al. Thymol attenuates the worsening of atopic dermatitis induced by Staphylococcus aureus membrane vesicles. Int Immunopharmacol. 2018;59:301-9. https://doi.org/10.1016/j.intimp.2018.04.027 PMid:29679854 DOI: https://doi.org/10.1016/j.intimp.2018.04.027

Kwon HI, Jeong NH, Kim SY, Kim MH, Son JH, Jun SH, et al. Inhibitory effects of thymol on the cytotoxicity and inflammatory responses induced by Staphylococcus aureus extracellular vesicles in cultured keratinocytes. Microb Pathog. 2019;134:103603. https://doi.org/10.1016/j.micpath.2019.103603 PMid:31226290 DOI: https://doi.org/10.1016/j.micpath.2019.103603

Carson CF, Cookson BD, Farrelly HD, Riley TV. Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J Antimicrob Chemother. 1995;35(3):421-4. https://doi.org/10.1093/jac/35.3.421 PMid:7782258 DOI: https://doi.org/10.1093/jac/35.3.421

Schnitzler P, Schön K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie. 2001;56(4):343-7.

Mondello F, De Bernardis F, Girolamo A, Salvatore G, Cassone A. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. J Antimicrob Chemother. 2003;51(5):1223-9. https://doi.org/10.1093/jac/dkg202 PMid:12668571 DOI: https://doi.org/10.1093/jac/dkg202

Hammer KA, Dry L, Johnson M, Michalak EM, Carson CF, Riley TV. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol Immunol. 2003;18(6):389-92. https://doi.org/10.1046/j.0902-0055.2003.00105.x PMid:14622345 DOI: https://doi.org/10.1046/j.0902-0055.2003.00105.x

Loughlin R, Gilmore BF, McCarron PA, Tunney MM. Comparison of the cidal activity of tea tree oil and terpinen- 4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett Appl Microbiol. 2008;46(4):428-33. https://doi.org/10.1111/j.1472-765X.2008.02334.x PMid:18298453 DOI: https://doi.org/10.1111/j.1472-765X.2008.02334.x

Noumi E, Merghni A, M Alreshidi M, Haddad O, Akmadar G, De Martino L, et al. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti-quorum sensing activity of Melaleuca alternifolia essential oil and its main component Terpinen-4-ol. Molecules. 2018;23(10):2672. https://doi.org/10.3390/molecules23102672 PMid:30336602 DOI: https://doi.org/10.3390/molecules23102672

Brun P, Bernabè G, Filippini R, Piovan A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol. 2019;76(1):108-16. https://doi.org/10.1007/s00284-018-1594-x PMid:30421144 DOI: https://doi.org/10.1007/s00284-018-1594-x

Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914-20. https://doi.org/10.1128/AAC.46.6.1914-1920.2002 PMid:12019108 DOI: https://doi.org/10.1128/AAC.46.6.1914-1920.2002

Jacobs MR, Appelbaum PC. Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin Pharmacother. 2006;7(14):1957-66. https://doi.org/10.1517/14656566.7.14.1957 PMid:17020421 DOI: https://doi.org/10.1517/14656566.7.14.1957

Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, et al. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016;100(20):8865-75. https://doi.org/10.1007/s00253-016-7692-4 PMid:27388769 DOI: https://doi.org/10.1007/s00253-016-7692-4

Sanyal D, Greenwood D. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J Med Microbiol. 1993;39(3):204-10. https://doi.org/10.1099/00222615-39-3-204 PMid:8366519 DOI: https://doi.org/10.1099/00222615-39-3-204

Corre J, Lucchini JJ, Mercier GM, Cremieux A. Antibacterial activity of phenethyl alcohol and resulting membrane alterations. Res Microbiol. 1990;141(4):483-97. https://doi.org/10.1016/0923-2508(90)90074-z PMid:1697975 DOI: https://doi.org/10.1016/0923-2508(90)90074-Z

Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J Herb Med. 2019;20:100289. https://doi.org/10.1016/j.hermed.2019.100289 DOI: https://doi.org/10.1016/j.hermed.2019.100289

Kwieciński J, Eick S, Wójcik K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents. 2009;33(4):343-7. https://doi.org/10.1016/j.ijantimicag.2008.08.028 PMid:19095413 DOI: https://doi.org/10.1016/j.ijantimicag.2008.08.028

Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M. In vitro activity of tea-tree oil against clinical skin isolates of meticillin- resistant and -sensitive Staphylococcus aureus and coagulase- negative staphylococci growing planktonically and as biofilms. J Med Microbiol. 2006;55(Pt 10):1375-80. https://doi.org/10.1099/jmm.0.46558-0 PMid:17005786 DOI: https://doi.org/10.1099/jmm.0.46558-0

Hammer KA, Carson CF, Riley TV. Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int JAntimicrobAgents. 2008;32(2):170-3. https://doi.org/10.1016/j.ijantimicag.2008.03.013 PMid:18571379 DOI: https://doi.org/10.1016/j.ijantimicag.2008.03.013

Ferrini AM, Mannoni V, Aureli P, Salvatore G, Piccirilli E, Ceddia T, et al. Melaleuca alternifolia essential oil possesses potent anti-staphylococcal activity extended to strains resistant to antibiotics. Int J Immunopathol Pharmacol. 2006;19(3):539-44. https://doi.org/10.1177/039463200601900309 PMid:17026838 DOI: https://doi.org/10.1177/039463200601900309

Papadopoulos CJ, Carson CF, Hammer KA, Riley TV. Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. J Antimicrob Chemother. 2006;58(2):449-51. https://doi.org/10.1093/jac/dkl200 PMid:16735435 DOI: https://doi.org/10.1093/jac/dkl200

Papadopoulos CJ, Carson CF, Chang BJ, Riley TV. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha- terpineol. Appl Environ Microbiol. 2008;74(6):1932-5. https:// doi.org/10.1128/AEM.02334-07 PMid:18192403 DOI: https://doi.org/10.1128/AEM.02334-07

Hammer KA, Carson CF, Riley TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 2012;56(2):909-15. https://doi.org/10.1128/AAC.05741-11 PMid:22083482 DOI: https://doi.org/10.1128/AAC.05741-11

Thomsen NA, Hammer KA, Riley TV, Van Belkum A, Carson CF. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int J Antimicrob Agents. 2013;41(4):343-51. https://doi.org/10.1016/j.ijantimicag.2012.12.011 PMid:23481659 DOI: https://doi.org/10.1016/j.ijantimicag.2012.12.011

Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay- Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000;49(11):619-26. https://doi.org/10.1007/s000110050639 PMid:11131302 DOI: https://doi.org/10.1007/s000110050639

Nogueira MN, Aquino SG, Rossa Junior C, Spolidorio DM. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1, IL-6 and IL-10 on human macrophages. Inflamm Res. 2014;63(9):769-78. https://doi.org/10.1007/s00011-014-0749-x PMid:24947163 DOI: https://doi.org/10.1007/s00011-014-0749-x

Brand C, Ferrante A, Prager RH, Riley TV, Carson CF, Finlay- Jones JJ, et al. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflamm Res. 2001;50:213-9. https://doi.org/10.1007/s000110050746 DOI: https://doi.org/10.1007/s000110050746

Koh KJ, Pearce AL, Marshman G, Finlay-Jones JJ, Hart PH. Tea tree oil reduces histamine-induced skin inflammation. Br J Dermatol. 2002;147(6):1212-7. https://doi.org/10.1046/j.1365-2133.2002.05034.x PMid:12452873 DOI: https://doi.org/10.1046/j.1365-2133.2002.05034.x

Han X, Parker TL. Melaleuca (Melaleuca alternifolia) essential oil demonstrates tissue-remodeling and metabolism-modulating activities in human skin cells. Cogent Biol. 2017;3:1318476. DOI: https://doi.org/10.1080/23312025.2017.1318476

Aspres N, Freeman S. Predictive testing for irritancy and allergenicity of tea tree oil in normal human subjects. Exogenous Dermatol. 2003;2:258-61. DOI: https://doi.org/10.1159/000078694

Rubel DM, Freeman S, Southwell IA. Tea tree oil allergy: What is the offending agent? Report of three cases of tea tree oil allergy and review of the literature. Australas J Dermatol. 1998;39(4):244-7. https://doi.org/10.1111/j.1440-0960.1998.tb01482.x PMid:9838722 DOI: https://doi.org/10.1111/j.1440-0960.1998.tb01482.x

Hausen BM, Reichling J, Harkenthal M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Dermat. 1999;10(2):68-77. https://doi.org/10.1016/s1046-199x(99)90002-7 PMid:10357714 DOI: https://doi.org/10.1016/S1046-199X(99)90002-7

Rudbäck J, Bergström MA, Börje A, Nilsson U, Karlberg AT. -Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem Res Toxicol. 2012;25(3):713-21. https://doi.org/10.1021/tx200486f PMid:22250748 DOI: https://doi.org/10.1021/tx200486f

Tisserand R, Young R. Constituent profiles. In: Essential Oil Safety. 2nd ed. St. Louis: Churchill Livingstone; 2014. p. 483-647. DOI: https://doi.org/10.1016/B978-0-443-06241-4.00014-X

Wang X, Wang Q, Shi J. Simulation of the vacuum distillation separating process of citral from litsea cubeba oil. Med Plant. 2013;4:8.

Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, et al. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS One. 2016;11(7):e0159006. https://doi.org/10.1371/journal.pone.0159006 PMid:27415761 DOI: https://doi.org/10.1371/journal.pone.0159006

Saddiq AA, Khayyat SA. Chemical and antimicrobial studies of monoterpene: Citral. Pest Biochem Physiol. 2010;98:89-93. https://doi.org/10.1016/j.pestbp.2010.05.004 DOI: https://doi.org/10.1016/j.pestbp.2010.05.004

Wuryatmo E, Klieber A, Scott ES. Inhibition of Citrus postharvest pathogens by vapor of citral and related compounds in culture. J Agric Food Chem. 2003;51(9):2637-40. https://doi.org/10.1021/jf026183l PMid:12696950. DOI: https://doi.org/10.1021/jf026183l

Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep. 2019;9(1):1614. https://doi.org/10.1038/s41598-018-38214-x PMid:30733560 DOI: https://doi.org/10.1038/s41598-018-38214-x

Dudai N, Weinstein Y, Krup M, Rabinski T, Ofir R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med. 2005;71(5):484-8. https://doi.org/10.1055/s-2005-864146 PMid:15931590 DOI: https://doi.org/10.1055/s-2005-864146

Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J Food Sci Technol. 2011;43:791-4. DOI: https://doi.org/10.9721/KJFST.2011.43.6.791

Vimal M, Vijaya P, Mumtaj P, Farhath M. Antibacterial activity of selected compounds of essential oils from indigenous plants. J Chem Pharm Res. 2013;5:248-53.

Long N, Tang H, Sun F, Lin L, Dai M. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. J Sci Food Agric. 2019;99(9):4423-9. https://doi.org/10.1002/ jsfa.9677 PMid:30891759 DOI: https://doi.org/10.1002/jsfa.9677

Gupta P, Patel DK, Gupta VK, Pal A, Tandon S, Darokar MP. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus. Phytomedicine. 2017;34:85-96. https://doi.org/10.1016/j.phymed.2017.08.016 PMid:28899514 DOI: https://doi.org/10.1016/j.phymed.2017.08.016

Ambade SV, Nagarkar SS, Deshpande NM. Evaluation of lemon grass essential oil as an antimicrobial agent against clinical isolates of MRSA, VRSA and VRE. Int J Biotechnol Biochem. 2017;13:377-90.

Hu W, Li C, Dai J, Cui H, Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin- resistant Staphylococcus aureus (MRSA). Ind Crops Prod. 2019;130:34-41. https://doi.org/10.1016/j.indcrop.2018.12.078 DOI: https://doi.org/10.1016/j.indcrop.2018.12.078

Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS One. 2008;3(5):e2082. https://doi.org/10.1371/journal.pone.0002082 PMid:18461159 DOI: https://doi.org/10.1371/journal.pone.0002082

Hagvall L, Bruze M, Engfeldt M, Isaksson M, Lindberg M, Ryberg K, et al. Contact allergy to citral and its constituents geranial and neral, coupled with reactions to the prehapten and prohapten geraniol. Contact Dermatitis. 2020;82:31-38. https://doi.org/10.1111/cod.13404 PMid:31566752 DOI: https://doi.org/10.1111/cod.13404

De Mozzi P, Johnston GA. An outbreak of allergic contact dermatitis caused by citral in beauticians working in a health spa. Contact Dermatitis. 2014;70(6):377-9. https://doi.org/10.1111/ cod.12173 PMid:24846588 DOI: https://doi.org/10.1111/cod.12173

Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash- Chmaisse H. Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol. 2003;22(7):355-62. https://doi.org/10.1191/0960327103ht379oa PMid:12929725

Lee KG, Shibamoto T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem. 2000;48(9):4290-3. https://doi.org/10.1021/jf000442u PMid:10995351 DOI: https://doi.org/10.1021/jf000442u

Chatterjee D, Bhattacharjee P. Use of eugenol-lean clove extract as a flavoring agent and natural antioxidant in mayonnaise: Product characterization and storage study. J Food Sci Technol. 2015;52(8):4945-54. https://doi.org/10.1007/s13197-014-1573-6 PMid:26243914 DOI: https://doi.org/10.1007/s13197-014-1573-6

Fujisawa S, Murakami Y. Eugenol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:45-66. https://doi.org/10.1007/978-3-319-41342-6_3 PMid:27771920 DOI: https://doi.org/10.1007/978-3-319-41342-6_3

Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti- metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement Altern Med. 2018;18(1):321. https://doi.org/10.1186/s12906-018-2392-5 PMid:30518369 DOI: https://doi.org/10.1186/s12906-018-2392-5

Khalil AA, Ur Rahman U, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017;7:32669-81. DOI: https://doi.org/10.1039/C7RA04803C

Apolónio J, Faleiro ML, Miguel MG, Neto L. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol Lett. 2014;354(2):92-101. https://doi.org/10.1111/1574-6968.12440 PMid:24716611 DOI: https://doi.org/10.1111/1574-6968.12440

Al-Shabib NA, Husain FM, Ahmad I, Baig MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol Biotechnol Equipment. 2017;31:387-96. DOI: https://doi.org/10.1080/13102818.2017.1281761

Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One. 2015;10(3):e0119564. https://doi.org/10.1371/journal.pone.0119564 PMid:25781975 DOI: https://doi.org/10.1371/journal.pone.0119564

Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One. 2010;5:e10790. https://doi.org/10.1371/journal.pone.0010790 DOI: https://doi.org/10.1371/journal.pone.0010790

Kwiatkowski P, Pruss A, Wojciuk B, Dołęgowska B, Wajs- Bonikowska A, Sienkiewicz M, et al. The influence of essential oil compounds on antibacterial activity of mupirocin- susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules. 2019;24(17):105. https://doi.org/10.3390/molecules24173105 PMid:31461850 DOI: https://doi.org/10.3390/molecules24173105

Lestari ML, Indrayanto G. Curcumin. In: Brittain HG, editor. Profiles of Drug Substances, Excipients and Related Methodology. Vol. 39., Ch. 3. Cambridge: Academic Press; 2014. p. 113-204. DOI: https://doi.org/10.1016/B978-0-12-800173-8.00003-9

Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326(2):472-4. https://doi.org/10.1016/j.bbrc.2004.11.051 PMid:15582601 DOI: https://doi.org/10.1016/j.bbrc.2004.11.051

Wright LE, Frye JB, Gorti B, Timmermann BN, Funk JL. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr Pharm Des. 2013;19(34):6218-25. https://doi.org/10.2174/1381612811319340013 PMid:23448448 DOI: https://doi.org/10.2174/1381612811319340013

Mazzolani F, Togni S. Oral administration of a curcumin- phospholipid delivery system for the treatment of central serous chorioretinopathy: A 12-month follow-up study. Clin Ophthalmol. 2013;7:939-45. https://doi.org/10.2147/OPTH.S45820 PMid:23723686 DOI: https://doi.org/10.2147/OPTH.S45820

Allegri P, Mastromarino A, Neri P. Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol. 2010;4:1201-6. https://doi.org/10.2147/OPTH.S13271 PMid:21060672 DOI: https://doi.org/10.2147/OPTH.S13271

Ghosh D, Bagchi D, Konishi T. Clinical Aspects of Functional Foods and Nutraceuticals. United States: CRC Press; 2014. DOI: https://doi.org/10.1201/b17349

Schraufstatter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164(4167):456. https://doi. org/10.1038/164456a0 PMid:18140450 DOI: https://doi.org/10.1038/164456a0

Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246-50. https://doi.org/10.1177/0748233713498458 PMid:24097361 DOI: https://doi.org/10.1177/0748233713498458

Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, et al. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr J Biotechnol. 2008;7:3832-5.

Sivasothy Y, Sulaiman SF, Ooi KL, Ibrahim H, Awang K. Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control. 2013;30:714-20. https://doi.org/10.1016/j.foodcont.2012.09.012 DOI: https://doi.org/10.1016/j.foodcont.2012.09.012

Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, et al. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014;19(11):18283-95. https://doi.org/10.3390/molecules191118283 PMid:25389660 DOI: https://doi.org/10.3390/molecules191118283

Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8-9):714-8. https://doi.org/10.1016/j.phymed.2013.02.006 PMid:23537748 DOI: https://doi.org/10.1016/j.phymed.2013.02.006

Teow SY, Ali SA. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci. 2015;28(6):2109-14. PMid:26639480

Moghaddam KM, Iranshahi M, Yazdi MC, Shahverdi AR. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int J Green Pharm. 2009;3:141-3. DOI: https://doi.org/10.4103/0973-8258.54906

Sardi JC, Polaquini CR, Freires IA, Galvão LC, Lazarini JG, Torrezan GS, et al. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J Med Microbiol. 2017;66(6):816-24. https://doi.org/10.1099/jmm.0.000494 PMid:28598304 DOI: https://doi.org/10.1099/jmm.0.000494

Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73-80. https://doi.org/10.1016/j.biochi.2016.01.013 PMid:26826458 DOI: https://doi.org/10.1016/j.biochi.2016.01.013

Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One. 2013;8(6):e67078. https://doi.org/10.1371/journal.pone.0067078 PMid:23825622 DOI: https://doi.org/10.1371/journal.pone.0067078

Bahraini P, Rajabi M, Mansouri P, Sarafian G, Chalangari R, Azizian Z. Turmeric tonic as a treatment in scalp psoriasis: A randomized placebo-control clinical trial. J Cosmet Dermatol. 2018;17(3):461-6. https://doi.org/10.1111/jocd.12513 PMid:29607625 DOI: https://doi.org/10.1111/jocd.12513

Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int. 2015;2015:283634. https://doi.org/10.1155/2015/283634 PMid:26090395 DOI: https://doi.org/10.1155/2015/283634

Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. J Am Acad Dermatol. 2008;58(4):625-31. https://doi.org/10.1016/j.jaad.2007.12.035 PMid:18249471 DOI: https://doi.org/10.1016/j.jaad.2007.12.035

Gadekar R, Saurabh MK, Thakur GS, Saurabh A. Study of formulation, characterisation and wound healing potential of transdermal patches of curcumin. Asian J Pharm Clin Res. 2012;5:225.

Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J Trauma. 2001;51(5):927-31. https://doi.org/10.1097/00005373-200111000-00017 PMid:11706342 DOI: https://doi.org/10.1097/00005373-200111000-00017

Subudhi U, Chainy GB. Expression of hepatic antioxidant genes in l-thyroxine-induced hyperthyroid rats: Regulation by vitamin E and curcumin. Chem Biol Interact. 2010;183(2):304-16. https://doi.org/10.1016/j.cbi.2009.11.004 PMid:19914224 DOI: https://doi.org/10.1016/j.cbi.2009.11.004

Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012;9(10):2801-11. https://doi.org/10.1021/mp300075u PMid:22946786 DOI: https://doi.org/10.1021/mp300075u

Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167-77. https://doi.org/10.1046/j.1524-475x.1998.60211.x PMid:9776860 DOI: https://doi.org/10.1046/j.1524-475X.1998.60211.x

Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1-7. https://doi.org/10.1016/j.lfs.2014.08.016 PMid:25200875 DOI: https://doi.org/10.1016/j.lfs.2014.08.016

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113r PMid:17999464 DOI: https://doi.org/10.1021/mp700113r

Han HK. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol. 2011;7(6):721-9. https://doi.org/10.1517/17425255.201 1.570332 PMid:21434835 DOI: https://doi.org/10.1517/17425255.2011.570332

Nguyen MH, Vu NB, Nguyen TH, Le HS, Le HT, Tran TT, et al. In vivo comparison of wound healing and scar treatment effect between curcumin-oligochitosan nanoparticle complex and oligochitosan-coated curcumin-loaded-liposome. J Microencapsul. 2019;36(2):156-68. https://doi.org/10.1080/02 652048.2019.1612476 PMid:31030591 DOI: https://doi.org/10.1080/02652048.2019.1612476

Karri VV, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93(Pt B):1519-29. https://doi.org/10.1016/j.ijbiomac.2016.05.038 PMid:27180291 DOI: https://doi.org/10.1016/j.ijbiomac.2016.05.038

Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed. 2013;3(8):663-7. https://doi.org/10.1016/S2221-1691(13)60133-1 PMid:23905026 DOI: https://doi.org/10.1016/S2221-1691(13)60133-1

Yamashita S, Yokoyama K, Matsumiya N, Yamaguchi H. Successful green tea nebulization therapy for subglottic tracheal stenosis due to MRSA infection. J Infect. 2001;42(3):222-3. https://doi.org/10.1053/jinf.2001.0766 PMid:11545562 DOI: https://doi.org/10.1053/jinf.2001.0766

Yamada H, Ohashi K, Atsumi T, Okabe H, Shimizu T, Nishio S, et al. Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J Hosp Infect. 2003;53(3):229-31. https://doi.org/10.1053/jhin.2002.1327 PMid:12623326 DOI: https://doi.org/10.1053/jhin.2002.1327

Yamada H, Tateishi M, Harada K, Ohashi T, Shimizu T, Atsumi T, et al. A randomized clinical study of tea catechin inhalation effects on methicillin-resistant Staphylococcus aureus in disabled elderly patients. J Am Med Dir Assoc. 2006;7(2):79- 83. https://doi.org/10.1016/j.jamda.2005.06.002 PMid:16461248 DOI: https://doi.org/10.1016/j.jamda.2005.06.002

Yam TS, Hamilton-Miller JM, Shah S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J Antimicrob Chemother. 1998;42(2):211-6. https://doi.org/10.1093/jac/42.2.211 PMid:9738838 DOI: https://doi.org/10.1093/jac/42.2.211

Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti- adhesive activity of green tea extract against pathogen adhesion. Phytother Res. 2009;23(4):460-6. https://doi.org/10.1002/ptr.2609 PMid:19107860 DOI: https://doi.org/10.1002/ptr.2609

Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem. 2012;135(2):672-5. https://doi.org/10.1016/j.foodchem.2012.04.143 PMid:22868144 DOI: https://doi.org/10.1016/j.foodchem.2012.04.143

Janecki A, Kolodziej H. Anti-adhesive activities of flavan-3-ols and proanthocyanidins in the interaction of group A-streptococci and human epithelial cells. Molecules. 2010;15(10):7139-52. https://doi.org/10.3390/molecules15107139 PMid:20953158 DOI: https://doi.org/10.3390/molecules15107139

Busscher HJ, Norde W, van der Mei HC. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol. 2008;74(9):2559-64. https://doi.org/10.1128/AEM.02839-07 PMid:18344352 DOI: https://doi.org/10.1128/AEM.02839-07

Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton- Miller JM, Taylor PW. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents. 2004;23(5):462-7. https://doi.org/10.1016/j.ijantimicag.2003.09.027 PMid:15120724 DOI: https://doi.org/10.1016/j.ijantimicag.2003.09.027

Hu ZQ, Zhao WH, Hara Y, Shimamura T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2001;48(3):361-4. https://doi.org/10.1093/jac/48.3.361 PMid:11533000 DOI: https://doi.org/10.1093/jac/48.3.361

Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and beta- lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45(6):1737-42. https://doi.org/10.1128/AAC.45.6.1737-1742.2001 PMid:11353619 DOI: https://doi.org/10.1128/AAC.45.6.1737-1742.2001

Novy P, Rondevaldova J, Kourimska L, Kokoska L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. Phytomedicine. 2013;20(5):432-5. https://doi. org/10.1016/j.phymed.2012.12.010 PMid:23485046 DOI: https://doi.org/10.1016/j.phymed.2012.12.010

Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(2):558-60. https://doi.org/10.1128/AAC.46.2.558-560.2002 PMid:11796378 DOI: https://doi.org/10.1128/AAC.46.2.558-560.2002

Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase- producing Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2266-8. https://doi.org/10.1128/AAC.46.7.2266-2268.2002 PMid:12069986 DOI: https://doi.org/10.1128/AAC.46.7.2266-2268.2002

Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother. 2004;48(6):1968-73. https://doi.org/10.1128/AAC.48.6.1968-1973.2004 PMid:15155186 DOI: https://doi.org/10.1128/AAC.48.6.1968-1973.2004

Bikels-Goshen T, Landau E, Saguy S, Shapira R. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology. Int J Food Microbiol. 2010;138(1-2):26-31. https://doi.org/10.1016/j.ijfoodmicro.2010.01.011 PMid:20132996 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.01.011

Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology (Reading). 2007;153(Pt 9):3162-73. https://doi.org/10.1099/mic.0.2007/009506-0 PMid:17768259 DOI: https://doi.org/10.1099/mic.0.2007/009506-0

Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D. Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother. 2005;49(10):4339-43. https://doi.org/10.1128/AAC.49.10.4339-4343.2005 PMid:16189116 DOI: https://doi.org/10.1128/AAC.49.10.4339-4343.2005

Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75(6):499-511. https://doi.org/10.1111/j.1365-2672.1993.tb01587.x PMid:8294303 DOI: https://doi.org/10.1111/j.1365-2672.1993.tb01587.x

Marinelli P, Pallares I, Navarro S, Ventura S. Dissecting the contribution of Staphylococcus aureus -phenol-soluble modulins to biofilm amyloid structure. Sci Rep. 2016;6:34552. https://doi.org/10.1038/srep34552 PMid:27708403 DOI: https://doi.org/10.1038/srep34552

Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater. 2013;9(2):5216-25. https://doi.org/10.1016/j.actbio.2012.10.014 PMid:23072830 DOI: https://doi.org/10.1016/j.actbio.2012.10.014

Kim HL, Lee JH, Kwon BJ, Lee MH, Han DW, Hyon SH, et al. Promotion of full-thickness wound healing using epigallocatechin-3-O-gallate/poly (lactic-co-glycolic acid) membrane as temporary wound dressing. Artif Organs. 2014;38:411-417. https://doi.org/10.1111/aor.12190 DOI: https://doi.org/10.1111/aor.12190

Huang YW, Zhu QQ, Yang XY, Xu HH, Sun B, Wang XJ, et al. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice. FASEB J. 2019;33(1):953-64. https://doi.org/10.1096/ fj.201800337R PMid:30070931 DOI: https://doi.org/10.1096/fj.201800337R

Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr. 2018;58(6):924-41. https://doi.org/10.1080/10408398.2016.1231168 PMid:27645804 DOI: https://doi.org/10.1080/10408398.2016.1231168

Liu Z, Bruins ME, Ni L, Vincken JP. Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem. 2018;66(32):8469-77. https://doi.org/10.1021/acs.jafc.8b02233 PMid:30020786 DOI: https://doi.org/10.1021/acs.jafc.8b02233

Dkhil MA, Abdel-Baki AS, Wunderlich F, Sies H, Al-Quraishy S. Anticoccidial and antiinflammatory activity of garlic in murine Eimeria papillata infections. Vet Parasitol. 2011;175(1-2):66-72. https://doi.org/10.1016/j.vetpar.2010.09.009 PMid:20943319 DOI: https://doi.org/10.1016/j.vetpar.2010.09.009

Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5(5):391-5. https://doi.org/10.1016/ S1995-7645(12)60065-0 PMid:22546657 DOI: https://doi.org/10.1016/S1995-7645(12)60065-0

Cavallito CJ, Buck JS, Suter C. Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J Am Chem Soc. 1944;66:1952-4. DOI: https://doi.org/10.1021/ja01239a049

Lawson LD, Wang ZJ. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. J Agric Food Chem. 2005;53(6):1974-83. https://doi.org/10.1021/jf048323s PMid:15769123 DOI: https://doi.org/10.1021/jf048323s

Block E. The chemistry of garlic and onions. Sci Am. 1985;252(3):114-9. https://doi.org/10.1038/ scientificamerican0385-114 PMid:3975593 DOI: https://doi.org/10.1038/scientificamerican0385-114

Ilić DP, Nikolić VD, Nikolić LB, Stanković MZ, Stanojević LP, Cakić MD. Allicin and related compounds: Biosynthesis, synthesis and pharmacological activity. Facta Univ Ser Phys Chem Technol. 2011;9:9-20. DOI: https://doi.org/10.2298/FUPCT1101009I

Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci. 2004;61(2):71-4. https://doi.org/10.1080/09674845.2004.11732646 PMid:15250668 DOI: https://doi.org/10.1080/09674845.2004.11732646

Müller A, Eller J, Albrecht F, Prochnow P, Kuhlmann K, Bandow JE, et al. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. J Biol Chem. 2016;291(22):11477-90. https://doi.org/10.1074/jbc.M115.702308 PMid:27008862 DOI: https://doi.org/10.1074/jbc.M115.702308

Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic Biol Med. 2019;131:144-53. https://doi.org/10.1016/j.freeradbiomed.2018.11.022 PMid:30500420 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.11.022

Fujisawa H, Watanabe K, Suma K, Origuchi K, Matsufuji H, Seki T, et al. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem. 2009;73:1948-55. https://doi.org/10.1271/bbb.90096 DOI: https://doi.org/10.1271/bbb.90096

Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ. Allicin: Chemistry and biological properties. Molecules. 2014;19(8):12591-618. https://doi.org/10.3390/molecules190812591 PMid:25153873 DOI: https://doi.org/10.3390/molecules190812591

Barton D, Hesse RH, O’Sullivan A, Pechet M. A new procedure for the conversion of thiols into reactive sulfenylating agents. J Organ Chem. 1991;56:6697-702. DOI: https://doi.org/10.1021/jo00023a039

Sheppard JG, McAleer JP, Saralkar P, Geldenhuys WJ, Long TE. Allicin-inspired pyridyl disulfides as antimicrobial agents for multidrug-resistant Staphylococcus aureus. Eur J Med Chem. 2018;143:1185-95. https://doi.org/10.1016/j.ejmech.2017.10.018 PMid:29126733 DOI: https://doi.org/10.1016/j.ejmech.2017.10.018

Loi VV, Huyen NT, Busche T, Tung QN, Gruhlke MC, Kalinowski J, et al. Staphylococcus aureus responds to allicin by global S-thioallylation - role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med. 2019;139:55-69. https://doi.org/10.1016/j.freeradbiomed.2019.05.018 PMid:31121222 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.05.018

Leng BF, Qiu JZ, Dai XH, Dong J, Wang JF, Luo MJ, et al. Allicin reduces the production of -toxin by Staphylococcus aureus. Molecules. 2011;16:7958-68. https://doi.org/10.3390/molecules16097958 PMid:21921868 DOI: https://doi.org/10.3390/molecules16097958

Bernardo K, Pakulat N, Fleer S, Schnaith A, Utermöhlen O, Krut O, et al. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother. 2004;48(2):546-55. https://doi.org/10.1128/aac.48.2.546-555.2004 PMid:14742208 DOI: https://doi.org/10.1128/AAC.48.2.546-555.2004

Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817-23. https://doi.org/10.1128/AAC.42.11.2817 PMid:9797209 DOI: https://doi.org/10.1128/AAC.42.11.2817

Sharifi-Rad J, Hoseini Alfatemi S, Sharifi Rad M, Iriti M. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res. 2014;4(6):863-8. https://doi.org/10.4103/2141-9248.144883 PMid:25506477 DOI: https://doi.org/10.4103/2141-9248.144883

Pérez-Köhler B, García-Moreno F, Bayon Y, Pascual G, Bellón JM. Inhibition of Staphylococcus aureus adhesion to the surface of a reticular heavyweight polypropylene mesh soaked in a combination of chlorhexidine and allicin: An in vitro study. PLoS One. 2015;10(5):e0126711. https://doi.org/10.1371/journal.pone.0126711 PMid:25962163 DOI: https://doi.org/10.1371/journal.pone.0126711

Zhai H, Pan J, Pang E, Bai B. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One. 2014;9(7):e102760. https://doi.org/10.1371/journal.pone.0102760 PMid:25025650 DOI: https://doi.org/10.1371/journal.pone.0102760

Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D. Carbon-dot-coated alginate beads as a smart stimuli- responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8(50):34179-84. https://doi.org/10.1021/acsami.6b10914 PMid:27998111 DOI: https://doi.org/10.1021/acsami.6b10914

Sherry E, Boeck H, Warnke PH. Topical application of a new formulation of eucalyptus oil phytochemical clears methicillin- resistant Staphylococcus aureus infection. Am J Infect Control. 2001;29(5):346. https://doi.org/10.1067/mic.2001.117403 PMid:11584265 DOI: https://doi.org/10.1067/mic.2001.117403

Caelli M, Porteous J, Carson CF, Heller R, Riley TV. Tea tree oil as an alternative topical decolonization agent for methicillin- resistant Staphylococcus aureus. J Hosp Infect. 2000;46(3):236- 7. https://doi.org/10.1053/jhin.2000.0830 PMid:11073734 DOI: https://doi.org/10.1016/S0195-6701(00)90830-2

Blackwood B, Thompson G, McMullan R, Stevenson M, Riley TV, Alderdice FA, et al. Tea tree oil (5%) body wash versus standard care (Johnson’s Baby Softwash) to prevent colonization with methicillin-resistant Staphylococcus aureus in critically ill adults: A randomized controlled trial. J Antimicrob Chemother. 2013;68(5):1193-9. https://doi.org/10.1093/jac/dks501 PMid:23297395 DOI: https://doi.org/10.1093/jac/dks501

Lee RL, Leung PH, Wong TK. A randomized controlled trial of topical tea tree preparation for MRSA colonized wounds. Int J Nurs Sci. 2014;1:7-14. https://doi.org/10.1016/j.ijnss.2014.01.001 DOI: https://doi.org/10.1016/j.ijnss.2014.01.001

Dryden MS, Dailly S, Crouch M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J Hosp Infect. 2004;56(4):283-6. https://doi.org/10.1016/j.jhin.2004.01.008 PMid:15066738 DOI: https://doi.org/10.1016/j.jhin.2004.01.008

Edmondson M, Newall N, Carville K, Smith J, Riley TV, Carson CF. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int Wound J. 2011;8(4):375- 84. https://doi.org/10.1111/j.1742-481X.2011.00801.x PMid:21564552 DOI: https://doi.org/10.1111/j.1742-481X.2011.00801.x

Rees L, Weil A. Integrated medicine. BMJ. 2001;322(7279):119- 20. https://doi.org/10.1136/bmj.322.7279.119 PMid:11159553 DOI: https://doi.org/10.1136/bmj.322.7279.119

Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, et al. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio. 2018;9(3):e00894-18. https://doi.org/10.1128/mBio.00894-18 PMid:29844113 DOI: https://doi.org/10.1128/mBio.00894-18

Hendry ER, Worthington T, Conway BR, Lambert PA. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009;64(6):1219-25. https://doi.org/10.1093/jac/dkp362 PMid:19837714 DOI: https://doi.org/10.1093/jac/dkp362

Karpanen TJ, Conway BR, Worthington T, Hilton AC, Elliott TS, Lambert PA. Enhanced chlorhexidine skin penetration with eucalyptus oil. BMC Infect Dis. 2010;10:278. https://doi.org/10.1186/1471-2334-10-278 PMid:20860796 DOI: https://doi.org/10.1186/1471-2334-10-278

Kwiatkowski P, Łopusiewicz Ł, Kostek M, Drozłowska E, Pruss A, Wojciuk B, et al. The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules. 2019;25(1):95. https://doi.org/10.3390/molecules25010095 PMid:31888005 DOI: https://doi.org/10.3390/molecules25010095

Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813-29. https://doi.org/10.2174/0929867033457719 PMid:12678685 DOI: https://doi.org/10.2174/0929867033457719

El-Kalek HH, Mohamed EA. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Int J Pharm Appl. 2012;3:387-98.

Warnke PH, Lott AJ, Sherry E, Wiltfang J, Podschun R. The ongoing battle against multi-resistant strains: In-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils. J Craniomaxillofac Surg. 2013;41(4):321-6. https://doi.org/10.1016/j.jcms.2012.10.012 PMid:23199627 DOI: https://doi.org/10.1016/j.jcms.2012.10.012

Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: An update. Open Microbiol J. 2013;7:59-71. https://doi.org/10.2174/1874285801307010059 PMid:23569469 DOI: https://doi.org/10.2174/1874285801307010059

Dickson RA, Houghton PJ, Hylands PJ, Gibbons S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother Res. 2006;20(1):41-5. https://doi.org/10.1002/ptr.1799 PMid:16397919 DOI: https://doi.org/10.1002/ptr.1799

Tegos G, Stermitz FR, Lomovskaya O, Lewis K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother. 2002;46(10):3133-41. https://doi.org/10.1128/AAC.46.10.3133-3141.2002 PMid:12234835 DOI: https://doi.org/10.1128/AAC.46.10.3133-3141.2002

Morel C, Stermitz FR, Tegos G, Lewis K. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem. 2003;51(19):5677-9. https://doi.org/10.1021/jf0302714 PMid:12952418 DOI: https://doi.org/10.1021/jf0302714

Marquez B, Neuville L, Moreau NJ, Genet JP, dos Santos AF, Caño de Andrade MC, et al. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66(15):1804-11. https://doi.org/10.1016/j.phytochem.2005.06.008 PMid:16051285 DOI: https://doi.org/10.1016/j.phytochem.2005.06.008

Pereda-Miranda R, Kaatz GW, Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod. 2006;69(3):406-9. https://doi.org/10.1021/np050227d PMid:16562846 DOI: https://doi.org/10.1021/np050227d

Rosato A, Vitali C, De Laurentis N, Armenise D, Antonietta Milillo M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine. 2007;14(11):727-32. https://doi.org/10.1016/j. phymed.2007.01.005 PMid:17303397 DOI: https://doi.org/10.1016/j.phymed.2007.01.005

Coutinho HD, Falcão-Silva VS, Siqueira-Júnior JP, Costa JG. Use of aromatherapy associated with antibiotictherapy: Modulation of the antibiotic activity by the essential oil of Zanthoxylum articulatum using gaseous contact. J Essential Oil Bearing Plants. 2010;13:670-5. DOI: https://doi.org/10.1080/0972060X.2010.10643878

Cirino IC, Menezes-Silva SM, Silva HT, de Souza EL, Siqueira- Júnior JP. The Essential oil from Origanum vulgare l. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy. 2014;60(5-6):290-3. https://doi.org/10.1159/000381175 PMid:25999020 DOI: https://doi.org/10.1159/000381175

Chovanová R, Mezovská J, Vaverková Š, Mikulášová M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol. 2015;61(1):58-62. https://doi.org/10.1111/lam.12424 PMid:25846244 DOI: https://doi.org/10.1111/lam.12424

Medeiros Barreto H, Cerqueira Fontinele F, Pereira de Oliveira A, Arcanjo DD, Cavalcanti Dos Santos BH, de Abreu AP, et al. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. Biomed Res Int. 2014;2014:305610. https://doi.org/10.1155/2014/305610 PMid:24683545 DOI: https://doi.org/10.1155/2014/305610

Sung WS, Lee DG. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2008;31(8):1614-7. https://doi.org/10.1248/bpb.31.1614 PMid:18670099 DOI: https://doi.org/10.1248/bpb.31.1614

Wang CM, Chen HT, Wu ZY, Jhan YL, Shyu CL, Chou CH. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules. 2016;21(2):139. https://doi.org/10.3390/molecules21020139 PMid:26821000 DOI: https://doi.org/10.3390/molecules21020139

Basri DF, Sandra V. Synergistic interaction of methanol extract from Canarium odontophyllum Miq. leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int J Microbiol. 2016;2016:5249534. https://doi.org/10.1155/2016/5249534 PMid:27006659 DOI: https://doi.org/10.1155/2016/5249534

Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci. 2014;21(1):90. https://doi.org/10.1186/s12929-014-0090-2 PMid:25208614 DOI: https://doi.org/10.1186/s12929-014-0090-2

Wang J, Guo J, Wu S, Feng H, Sun S, Pan J, et al. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro. PLoS One. 2012;7(8):e43213. https://doi.org/10.1371/journal.pone.0043213 PMid:22927951 DOI: https://doi.org/10.1371/journal.pone.0043213

Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015;15:178. https://doi.org/10.1186/s12906-015-0699-z PMid:26060128 DOI: https://doi.org/10.1186/s12906-015-0699-z

Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of ampicillin resistance in MRSA via inhibition of penicillin- binding protein 2a by Acalypha wilkesiana. Biomed Res Int. 2014;2014:965348. https://doi.org/10.1155/2014/965348 PMid:25101303 DOI: https://doi.org/10.1155/2014/965348

Santiago C, Lim KH, Loh HS, Ting KN. Prevention of cell- surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Complement Altern Med. 2015;15:79. https://doi.org/10.1186/s12906-015-0615-6 PMid:25880167 DOI: https://doi.org/10.1186/s12906-015-0615-6

Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, et al. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med (Maywood). 2017;242(7):731-43. https://doi.org/10.1177/1535370216689828 PMid:28118725 DOI: https://doi.org/10.1177/1535370216689828

Yurchyshyn O, Rusko H, Kutsyk R. Synergistic effects of ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Ann Mechnikovs Inst. 2017;2017(3):71-9.

Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol. 2000;52(3):361-6. https://doi.org/10.1211/0022357001773922 PMid:10757427 DOI: https://doi.org/10.1211/0022357001773922

Aqil F, Khan MS, Owais M, Ahmad I. Effect of certain bioactive plant extracts on clinical isolates of beta-lactamase producing methicillin resistant Staphylococcus aureus. J Basic Microbiol. 2005;45(2):106-14. https://doi.org/10.1002/jobm.200410355 PMid:15812867 DOI: https://doi.org/10.1002/jobm.200410355

Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol. 2008;46(3):283-8. https://doi.org/10.1007/s12275-008-0012-7 PMid:18604497 DOI: https://doi.org/10.1007/s12275-008-0012-7

Cushnie TP, Lamb AJ. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine. 2006;13(3):187-91. https://doi.org/10.1016/j.phymed.2004.07.003 PMid:16428027 DOI: https://doi.org/10.1016/j.phymed.2004.07.003

Frimodt-Møller N, Frølund Thomsen V. Interaction between beta-lactam antibiotics and gentamicin against Streptococcus pneumoniae in vitro and in vivo. Acta Pathol Microbiol Immunol Scand B. 1987;95(5):269-75. https://doi.org/10.1111/j.1699-0463.1987.tb03124.x PMid:3673584 DOI: https://doi.org/10.1111/j.1699-0463.1987.tb03124.x

Tawfiq UA, Yusha’u M, Bashir M, Adamu S, Umar PH. Synergistic antibacterial effect of stem bark extracts of Faidherbia albida and Psidium guajava against methicillin resistant Staphylococcus aureus. Bayero J Pure Appl Sci. 2017;10:112-5. DOI: https://doi.org/10.4314/bajopas.v10i1.23S

Adnan SN, Ibrahim N, Yaacob WA. Disruption of methicillin- resistant Staphylococcus aureus protein synthesis by tannins. Germs. 2017;7(4):186-92. https://doi.org/10.18683/ germs.2017.1125 PMid:29264356 DOI: https://doi.org/10.18683/germs.2017.1125

Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911 PMid:31156565 DOI: https://doi.org/10.3389/fmicb.2019.00911

Yarnell E, Abascal K. Herbal support for methicillin-resistant Staphylococcus aureus infections. Alternat Complement Ther. 2009;15:189-95. https://doi.org/10.1089/act.2009.15402 DOI: https://doi.org/10.1089/act.2009.15402

Wang YF, Que HF, Wang YJ, Cui XJ. Chinese herbal medicines for treating skin and soft-tissue infections. Cochrane Database Syst Rev. 2014;2014(7):CD010619. https://doi.org/10.1002/14651858.CD010619.pub2 PMid:25061914 DOI: https://doi.org/10.1002/14651858.CD010619.pub2

Fallarero A, Hanski L, Vuorela P. How to translate a bioassay into a screening assay for natural products: General considerations and implementation of antimicrobial screens. Planta Med. 2014;80(14):1182-99. https://doi.org/10.1055/s-0034-1383061 PMid:25221978 DOI: https://doi.org/10.1055/s-0034-1383061

Hayes AJ, Markovic B. Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part1.Antimicrobial activity and in vitro cytotoxicity. Food Chem Toxicol. 2002;40(4):535-43. https://doi.org/10.1016/s0278-6915(01)00103-x PMid:11893412 DOI: https://doi.org/10.1016/S0278-6915(01)00103-X

Hon KL, Ip M, Wong CK, Chan BCL, Leung PC, Leung TF. In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis. J Dermatolog Treat. 2018;29(3):235-7. https://doi.org/10.1080/09546634.2017.1395804 PMid:29098912 DOI: https://doi.org/10.1080/09546634.2017.1395804

Weckesser S, Engel K, Simon-Haarhaus B, Wittmer A, Pelz K, Schempp CM. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14(7-8):508-16. https://doi.org/10.1016/j.phymed.2006.12.013PMid:17291738 DOI: https://doi.org/10.1016/j.phymed.2006.12.013

Tohidpour A, Sattari M, Omidbaigi R, Yadegar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17(2):142-5. https://doi.org/10.1016/j.phymed.2009.05.007 PMid:19576738 DOI: https://doi.org/10.1016/j.phymed.2009.05.007

Nelson RR. In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin- resistant Enterococcus faecium. J Antimicrob Chemother. 1997;40(2):305-6. https://doi.org/10.1093/jac/40.2.305 PMid:9302003 DOI: https://doi.org/10.1093/jac/40.2.305

Hamoud R, Sporer F, Reichling J, Wink M. Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas((R)) Tropfen) in comparison to its individual essential oil ingredients. Phytomedicine. 2012;19:969-76. https://doi.org/10.1016/j.phymed.2012.05.014 DOI: https://doi.org/10.1016/j.phymed.2012.05.014

Christoph F, Kaulfers PM, Stahl-Biskup E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of beta-triketones. Planta Med. 2000;66(6):556-60. https://doi.org/10.1055/s-2000-8604 PMid:10985085 DOI: https://doi.org/10.1055/s-2000-8604

de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid Based Complement Alternat Med. 2013;2013:852049. https://doi. org/10.1155/2013/852049 PMid:23737850 DOI: https://doi.org/10.1155/2013/852049

Kirmizibekmez H, Demirci B, Yeşilada E, Başer KH, Demirci F. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey. Nat Prod Commun. 2009;4(7):1001-6. DOI: https://doi.org/10.1177/1934578X0900400727

Barbosa LN, Probst IS, Andrade BF, Alves FC, Albano M, da Cunha Mde L, et al. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria. J Oleo Sci. 2015;64:289-98. https://doi.org/10.5650/jos.ess14209 DOI: https://doi.org/10.5650/jos.ess14209

LaPlante KL. In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;57(4):413-8. https:// doi.org/10.1016/j.diagmicrobio.2006.09.007 PMid:17141452 DOI: https://doi.org/10.1016/j.diagmicrobio.2006.09.007

McMahon MA, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell DA. Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol. 2008;47(4):263-8. https://doi.org/10.1111/j.1472-765X.2008.02420.x PMid:18778374 DOI: https://doi.org/10.1111/j.1472-765X.2008.02420.x

Carson CF, Hammer KA, Riley TV. Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios. 1995;82(332):181-5.

Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol. 2011;32:63-8. https://doi.org/10.1016/j.etap.2011.03.011 DOI: https://doi.org/10.1016/j.etap.2011.03.011

Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, et al. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J Ethnopharmacol. 2020;253:112652. https://doi.org/10.1016/j.jep.2020.112652 PMid:32035880 DOI: https://doi.org/10.1016/j.jep.2020.112652

Jaradat N, Al-Maharik N. Fingerprinting, antimicrobial, antioxidant, anticancer, cyclooxygenase and metabolic enzymes inhibitory characteristic evaluations of Stachys viticina Boiss. Essential oil. Molecules. 2019;24(21):3880. https://doi.org/10.3390/molecules24213880 PMid:31661884 DOI: https://doi.org/10.3390/molecules24213880

Ramírez-Rueda RY, Marinho J, Salvador MJ. Bioguided

identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol. 2019;14:1179-89. https://doi.org/10.2217/fmb-2019-0167 PMid:31625440 DOI: https://doi.org/10.2217/fmb-2019-0167

Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine. 2005;12(3):203-8. https://doi.org/10.1016/j.phymed.2003.09.012 PMid:15830842 DOI: https://doi.org/10.1016/j.phymed.2003.09.012

Zuo GY, Li Y, Wang T, Han J, Wang GC, Zhang YL, et al. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules. 2011;16(12):9819-26. https://doi.org/10.3390/molecules16129819 PMid:22117171 DOI: https://doi.org/10.3390/molecules16129819

Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001;45:3198-201. https://doi.org/10.1128/AAC.45.11.3198-3201.2001 DOI: https://doi.org/10.1128/AAC.45.11.3198-3201.2001

Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin- resistant Staphylococcus aureus. Microbiol Immunol. 2004;48(1):67- 73. https://doi.org/10.1111/j.1348-0421.2004.tb03489.x PMid:14734860 DOI: https://doi.org/10.1111/j.1348-0421.2004.tb03489.x

Abreu AC, Coqueiro A, Sultan AR, Lemmens N, Kim HK, Verpoorte R, et al. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep. 2017;7(1):3777. https://doi.org/10.1038/s41598-017-03716-7 PMid:28630440 DOI: https://doi.org/10.1038/s41598-017-03716-7

Smith E, Williamson E, Zloh M, Gibbons S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res. 2005;19(6):538-42. https://doi.org/10.1002/ptr.1711 PMid:16114093 DOI: https://doi.org/10.1002/ptr.1711

Braga LC, Leite AA, Xavier KG, Takahashi JA, Bemquerer MP, Chartone-Souza E, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol. 2005;51(7):541-7. https://doi.org/10.1139/w05-022 PMid:16175202 DOI: https://doi.org/10.1139/w05-022

Sakagami Y, Mimura M, Kajimura K, Yokoyama H, Linuma M, Tanaka T, et al. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett Appl Microbiol. 1998;27(2):98-100. https://doi.org/10.1046/j.1472-765x.1998.00386.x PMid:9750330 DOI: https://doi.org/10.1046/j.1472-765X.1998.00386.x

Downloads

Additional Files

Published

2024-06-15

How to Cite

1.
Tirant M, Tirant H, Wollina U. Herbal Bioactive Compounds for Skin Infections and Inflammatory Conditions. Open Access Maced J Med Sci [Internet]. 2024 Jun. 15 [cited 2024 Nov. 24];12(2):247-90. Available from: https://oamjms.eu/index.php/mjms/article/view/11888

Issue

Section

Narrative Review Article

Categories