Evaluation of Magnetic Parameters and Kinetics of the Magnetic Nanoparticles in High Magnetic Fields and its Potential Applications

Authors

  • Mark Christopher Arokiaraj Department of Cardiology, Pondicherry Institute of Medical Sciences, Pondicherry, India
  • Aleksandr Liubimtcev Quickfield Support Team, Tera Analysis Ltd., Svendborg, Denmark

DOI:

https://doi.org/10.3889/oamjms.2020.3256

Keywords:

Magnetic nanoparticles, High magnetic fields, Electromagnetic finite element analysis, Angiogenesis, Tissue engineering, Halbach array

Abstract

BACKGROUND: Multifunctional nanoparticles are known for their wide range of biomedical applications. Controlling the magnetic properties of these nanoparticles is imperative for various applications, including therapeutic angiogenesis. AIM: The study was performed to evaluate the magnetic properties and their control mechanisms by the external magnetic field.

METHODS: A100 nm magnetic nanoparticle was placed in the magnetic field, and parametrically, the magnet field strength and distance were evaluated. Various models of magnetic strength and disposition were evaluated. Magnetic flux density, force/weight, and magnetic gradient strength were the parameters evaluated in the electromagnetic computational software.

RESULTS: The seven-coil method with three centrally placed coils as Halbach array, and each coil with a flux density of 7 Tesla, and with a coil dimension of 20 cm × 20 cm (square model) of each coil showed a good magnetic strength and force/weight parameters in a distance of 15 cm from the centrally placed coil. The particles were then evaluated for their motion characteristics in saline. It showed good displacement and acceleration properties. After that, the particles were theoretically assessed in a similar mathematical model after parametrically correcting the drag force. After the application of high drag forces, the particles showed adequate motion characteristics. When the particle size was reduced further, the motion characteristics were preserved even with high drag forces.

CONCLUSION: There is potential for a novel method of controlling multifunctional magnetic nanoparticles using high magnetic fields. Further studies are required to evaluate the motion characteristics of these particles in vivo and in vitro.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Tran N, Webster T. Magnetic nanoparticles: Biomedical applications and challenges. J Mater Chem. 2010;20:8760.

Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2017;7(5):1700845. https://doi.org/10.1002/adhm.201700845 PMid:29280314

Mohammed L, Gomaa H, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2017;30:1-4. https://doi.org/10.1016/j.partic.2016.06.001

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818-78. https://doi.org/10.1021/cr300068p PMid:23043508

Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol. 2008;3(3):139-43. PMid:18654485

Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4(9):598-606. https://doi.org/10.1038/nnano.2009.202 PMid:19734934

Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2008;3(1):36-40. https://doi.org/10.1038/nnano.2007.418 PMid:18654448

Fu A, Wilson RJ, Smith BR, Mullenix J, Earhart C, Akin D, et al. Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano. 2012;6(8):6862-9. https://doi.org/10.1021/nn301670a PMid:22857784

Arokiaraj MC. A novel targeted angiogenesis technique using VEGF conjugated magnetic nanoparticles and in-vitroendothelial barrier crossing. BMC Cardiovasc Disord. 2017;17(1):209. https://doi.org/10.1186/s12872-017-0643-x PMid:28754088

Chikazumi S, Graham CD. Physics of Ferromagnetism. 2nd ed. Oxford: Oxford University Press; 1997. p. 118.

David JJ. Classical Electrodynamics. 2nd ed. New York: Wiley; 1975.

Halbach K. Applications of permanent magnets in accelerators and electron storage rings. J Appl Phys. 1985;57:3605-8.

Sarwar A, Nemirovski A, Shapiro B. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J Magn Magn Mater. 2012;324(5):742-54. https://doi.org/10.1016/j.jmmm.2011.09.008 PMid:23335834

Elliott R. Transformers-the Basics. In: Beginner’s Guide to Transformers. Elliott Sound Products; 2010. https://sound-au.com/xfmr.htm. Retrieved 2011-03-17.

Kulkarni S, Ramaswamy B, Horton E, Gangapuram S, Nacev A, Depireux D, et al. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field. J Magn Magn Mater. 2015;393:243-52. https://doi.org/10.1016/j.jmmm.2015.05.069 PMid:26120240

Schaller V, Kräling U, Rusu C, Petersson K, Wipenmyr J, Krozer A, et al. Motion of nanometer sized magnetic particles in a magnetic field gradient. J Appl Phys. 2008;104:93918. https://doi.org/10.1063/1.3009686

Vanninen R, Aikiä M, Könönen M, Partanen K, Tulla H, Hartikainen P, et al. Subclinical cerebral complications after coronary artery bypass grafting: Prospective analysis with magnetic resonance imaging, quantitative electroencephalography, and neuropsychological assessment. Arch Neurol. 1998;55(5):618-27. https://doi.org/10.1001/archneur.55.5.618 PMid:9605718

Khorsandi M, Shaikhrezai K, Zamvar V. Complications of coronary artery bypass grafting surgery. Pan Vasc Med. 2015;:2359-67. https://doi.org/10.1007/978-3-642-37078-6_233

Diodato M, Chedrawy EG. Coronary artery bypass graft surgery: The past, present, and future of myocardial revascularisation. Surg Res Pract. 2014;2014:726158. https://doi.org/10.1155/2014/726158 PMid:25374960

Glance LG, Osler TM, Mukamel DB, Dick AW. Effect of complications on mortality after coronary artery bypass grafting surgery: Evidence from New York state. J Thorac Cardiovasc Surg. 2007;134(1):53-8. https://doi.org/10.1016/j.jtcvs.2007.02.037 PMid:17599486

Moazzami K, Dolmatova E, Maher J, Gerula C, Sambol J, Klapholz M, et al. In-hospital outcomes and complications of coronary artery bypass grafting in the United States between 2008 and 2012. J Cardiothorac Vasc Anesth. 2017;31(1):19-25. https://doi.org/10.1053/j.jvca.2016.08.008 PMid:27887898

Safaie N, Montazerghaem H, Jodati A, Maghamipour N. In-hospital complications of coronary artery bypass graft surgery in patients older than 70 years. J Cardiovasc Thorac Res. 2015;7(2):60-2. https://doi.org/10.15171/jcvtr.2015.13 PMid:26191393

Cesena FH, Favarato D, César LA, de Oliveira SA, da Luz PL. Cardiac complications during waiting for elective coronary artery bypass graft surgery: Incidence, temporal distribution and predictive factors. Eur J Cardiothorac Surg. 2004;25(2):196-202. https://doi.org/10.1016/j.ejcts.2003.11.004 PMid:14747112

Schepers A, Klinkert P, Vrancken Peeters MP, Breslau PJ. Complication registration in patients after peripheral arterial bypass surgery. Ann Vasc Surg. 2003;17:198-202. https://doi.org/10.1007/s10016-001-0290-6 PMid:12616358

Slovut DP, Lipsitz EC. Surgical technique and peripheral artery disease. Circulation. 2012;126:1127-38. https://doi.org/10.1161/circulationaha.111.059048 PMid:22927475

Sianos G, Konstantinidis NV, Di Mario C, Karvounis H. Theory and practical based approach to chronic total occlusions. BMC Cardiovasc Disord. 2016;16:33. https://doi.org/10.1186/s12872-016-0209-3 PMid:26860695

Mukherjee D. Management of refractory angina in the contemporary era. Eur Heart J. 2013;34:2655-7. PMid:23739242

Henry TD, Satran D, Jolicoeur EM. Treatment of refractory angina in patients not suitable for revascularization. Nat Rev Cardiol. 2014;11(2):78-95. https://doi.org/10.1038/nrcardio.2013.200 PMid:24366073

Gorski T, De Bock K. Metabolic regulation of exercise-induced angiogenesis. Vasc Biol. 2019;1:H1-8.

Cappelletto A, Zacchigna S. Cardiac revascularization: State of the art and perspectives. Vasc Biol. 2019;1:R1-5.

Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389-95. PMid:10742145

Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012;161(2):377-88. https://doi.org/10.1016/j.jconrel.2012.04.008 PMid:22516095

Tafuro S, Ayuso E, Zacchigna S, Zentilin L, Moimas S, Dore F, et al. Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res. 2009;83(4):663-71. https://doi.org/10.1093/cvr/cvp152 PMid:19443424

Pettinari M, Navarra E, Noirhomme P, Gutermann H. The state of robotic cardiac surgery in Europe. Ann Cardiothorac Surg. 2017;6(1):1-8. https://doi.org/10.21037/acs.2017.01.02 PMid:28203535

Jiang Z, Shan K, Song J, Liu J, Rajendran S, Pugazhendhi A, et al. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci. 2019;220:156-61. https://doi.org/10.1016/j.lfs.2019.01.056 PMid:30716338

Coffman JD, Lempert JA. Venous flow velocity, venous volume and arterial blood flow. Circulation. 1975;52:141-5. https://doi.org/10.1161/01.cir.52.1.141 PMid:1132117

Landry JP, Ke Y, Yu GL, Zhu XD. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J Immunol Methods. 2015;417:86-96. https://doi.org/10.1016/j.jim.2014.12.011 PMid:25536073

Arokiaraj MC. Extracorporeal application of eddy brakes to control the magnetic nanoparticles and modulating the drift and diffusion characteristics of these particles in the heart a theoretical assessment. New Biotechnol. 2018;44:S8-9. https://doi.org/10.1016/j.nbt.2018.05.182

Arokiaraj MC, Menesson E, Cereijo U, Perera S, Mas JM. A novel method to reduce hypoxic myocyte injury. Cardiol Belarus. 2019;11:316-30.

Arokiaraj MC. Novel synthesis of magnetic nanoparticles conjugation with perfluorocarbon nanobubbles for potential adjunct therapy of acute myocardial ischaemia. Folia Cardiol. 2019;14:425-7.

Downloads

Published

2020-02-15

How to Cite

1.
Arokiaraj MC, Liubimtcev A. Evaluation of Magnetic Parameters and Kinetics of the Magnetic Nanoparticles in High Magnetic Fields and its Potential Applications. Open Access Maced J Med Sci [Internet]. 2020 Feb. 15 [cited 2024 Apr. 18];8(A):24-36. Available from: https://oamjms.eu/index.php/mjms/article/view/3256