Antidiabetic and Antioxidant Effects of Acteoside from Jacaranda mimosifolia Family Biognoniaceae in Streptozotocin–Nicotinamide Induced Diabetes in Rats
DOI:
https://doi.org/10.3889/oamjms.2020.3325Keywords:
Acteoside, Antidiabetic, Antioxidant, Pioglitazone, RatsAbstract
BACKGROUND: Acteoside is a phenylethanoid compound isolated from Jacaranda mimosifolia D. Don leaves with a potential antidiabetic effect.
OBJECTIVES: This study was designed to investigate the antidiabetic and antioxidant effects of acteoside in streptozotocin-nicotinamide (STZ-NA)-induced Type 2 diabetes in rats.
METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of a single dose of STZ (52.5 mg/kg), 15 min following i.p. administration of NA (25 mg/kg). Rats were divided into six groups; Group I: Normal rat group received the vehicle, Group II: Diabetic control group, and Groups III-IV: Diabetic rat groups were treated by either oral acteoside (10, 20, and 40 mg/kg) or pioglitazone (30 mg/kg) for 21 consecutive days. Biochemical parameters were assessed in the serum and liver homogenates. Examination of liver sections for histopathology was also carried out.
RESULTS: Acteoside treated rats showed significant lower levels of blood glucose, glycosylated hemoglobin, total cholesterol, triglycerides, and increased serum insulin compared to control diabetic rats. Furthermore, acteoside treated rats, in comparison to the diabetic control, demonstrated significantly reduced malondialdehyde, increased reduced glutathione liver contents, and attenuated pathological alterations in the liver. These effects were comparable to those caused by the standard antidiabetic drug, pioglitazone. In vitro, acteoside scavenged stable free radical 1,1-diphenyl-2-picrylhydrazyl.
CONCLUSION: Acteoside could be considered as a potential therapeutic agent for type 2 diabetes mellitus. However, studying further mechanisms underlying its antidiabetic effect is recommended.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of Type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/ nrendo.2017.151 PMid:29219149
Krentz AJ, Clough G, Byrne CD. Interactions between microvascular and macrovascular disease in diabetes: Pathophysiology and therapeutic implications. Diabetes Obes Metab. 2007;9(6):781-91. https://doi. org/10.1111/j.1463-1326.2007.00670.x PMid:17924862
Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical Review of antidiabetic drugs: Implications for Type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6. https://doi.org/10.3389/ fendo.2017.00006 PMid:28167928
Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: A review. Planta Med.2014;80(5):354-77. https://doi.org/10.1055/s-0033-1360335 PMid:24535720
Fatma AM, Mohamed SM. A novel phenylethanoid dimer and flavonoids from Jacaranda mimosifolia. Für Naturforschung. 2007;62:1213. https://doi.org/10.1515/znb-2007-0918
Potapovich AI, Kostyuk VA, Kostyuk TV, de Luca C, Korkina LG. Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflamm Res. 2013;62(8):773-80. https://doi.org/10.1007/s00011-013-0634-z PMid:23689555
Seo ES, Oh BK, Pak JH, Yim SH, Gurunathan S, Kim YP, et al. Acteoside improves survival in cecal ligation and puncture-induced septic mice via blocking of high mobility group box 1 release. Mol Cells. 2013;35(4):348-54. https://doi.org/10.1007/ s10059-013-0021-1 PMid:23563799
Lee KJ, Woo ER, Choi CY, Shin DW, Lee DG, You HJ, et al. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004;74(8):1051-64. https://doi. org/10.1016/j.lfs.2003.07.020 PMid:14672760
Kostyuk VA, Potapovich AI, Suhan TO, de Luca C, Korkina LG. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol. 2011;658(2-3):248-56. https://doi.org/10.1016/j. ejphar.2011.02.022 PMid:21371465
Peerzada KJ, Faridi AH, Sharma L, Bhardwaj SC, Satti NK, Shashi B, et al. Acteoside-mediates chemoprevention of experimental liver carcinogenesis through STAT-3 regulated oxidative stress and apoptosis. Environ Toxicol. 2016;31(7):782- 98. https://doi.org/10.1002/tox.22089 PMid:26990576
Yuan J, Ren J, Wang Y, He X, Zhao Y. Acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of parkinson’s disease. PLoS One. 2016;11(9):e0162696. https://doi.org/10.1371/journal.pone.0162696 PMid:27632381
Liu YH, Lu YL, Han CH, Hou WC. Inhibitory activities of acteoside, isoacteoside, and its structural constituents against protein glycation in vitro. Bot Stud. 2013;54(1):6. https://doi. org/10.1186/1999-3110-54-6 PMid:28510849
Xiong WT, Gu L, Wang C, Sun HX, Liu X. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in Type 2 diabetic db/db mice. J Ethnopharmacol. 2013;150(3):935-45. https://doi.org/10.1016/j.jep.2013.09.027 PMid:24095831
Morikawa T, Ninomiya K, Imamura M, Akaki J, Fujikura S, Pan Y, et al. Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. J Nat Med. 2014;68(3):561-6. https://doi.org/10.1007/ s11418-014-0837-9 PMid:24748124
El-Marasy SA, Abdallah HM, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Anti-depressant effect of hesperidin in diabetic rats. Can J Physiol Pharmacol. 2014;92(11):945-52. https://doi.org/10.1139/cjpp-2014-0281 PMid:253580 20
Kröger H, Dietrich A, Ohde M, Lange R, Ehrlich W, Kurpisz M. Protection from acetaminophen-induced liver damage by the synergistic action of low doses of the poly(ADP-ribose) polymerase-inhibitor nicotinamide and the antioxidant N-acetylcysteine or the amino acid L-methionine. Gen Pharmacol. 1997;28(2):257-63. https://doi.org/10.1016/ s0306-3623(96)00181-4 PMid:9013204
Liu S, Zhang J, Li W, Zhang T, Hu D. Acteoside reduces testosterone by inhibiting cAMP, p450scc, and StAR in rat Leydig cells. Mol Cell Toxicol. 2015;11:11-7. https://doi.org/10.1007/ s13273-015-0002-x
Vidal R, Valdizán EM, Mostany R, Pazos A, Castro E. Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain. J Neurochem. 2009;110(3):1120-7. https://doi. org/10.1111/j.1471-4159.2009.06210.x PMid:19522734
Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol. 1969;22(2):246. https://doi.org/10.1136/jcp.22.2.246-b PMid:5776563
Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077-80. https://doi. org/10.1093/clinchem/28.10.2077 PMid:6812986
Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37-43. https://doi. org/10.1016/0009-8981(78)90081-5 PMid:719890
Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-8. PMid:13967893
Peiwu L, Hopia A, Jari S, Yrjönen T, Vuorela H. TLC Method for Evaluation of Free Radical Scavenging Activity of Rapeseed Meal by Video Scanning Technology. In: Proceedings of the 10th International Rapeseed Congress; 1999.
Govindarajan R, Rastogi S, Vijayakumar M, Shirwaikar A, Rawat AK, Mehrotra S, et al. Studies on the antioxidant activities of Desmodium gangeticum. Biol Pharm Bull. 2003;26(10):1424-7. https://doi.org/10.1248/bpb.26.1424 PMid:14519948
Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Edinburgh: Churchill Livingstone; 2008.
Tiwari P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J Diabetes Res. 2015;2015:340838. PMid:26273667
Alipieva K, Korkina L, Orhan IE, Georgiev MI. Verbascoside a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv. 2014;32(6):1065-76. https://doi. org/10.1016/j.biotechadv.2014.07.001 PMid:25048704
Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood). 2012;237(5):481-90. https://doi.org/10.1258/ ebm.2012.011372 PMid:22619373
Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in Type 2 diabetes. Cell Metab. 2014;20(4):573-91. https://doi.org/10.1016/j.cmet.2014.08.005 PMid:25242225
Staels B. Metformin and pioglitazone: Effectively treating insulin resistance. Curr Med Res Opin. 2006;22(Suppl 2):S27-37. PMid:16914073
Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123(6):993-9. PMid:16360030
Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, et al. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes Relat Metab Disord. 2001;25(10):1459-64. https://doi.org/10.1038/sj.ijo.0801747 PMid:11673766
Monnier L, Colette C. Target for glycemic control: Concentrating on glucose. Diabetes Care 2009;32(Suppl 2):S199-204. https:// doi.org/10.2337/dc09-s310 PMid:19875552
Dhananjayan I, Kathiroli S, Subramani S, Veerasamy V. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin nicotinamide induced experimental rats. Biomed Pharmacother. 2017;88:1069-79. https://doi.org/10.1016/j.biopha.2017.01.146 PMid:28192880
Muruganathan U, Srinivasan S, Vinothkumar V. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomed Pharmacother. 2017;92:229-39. https://doi.org/10.1016/j.biopha.2017.05.068 PMid:28549291
Chaudhry J, Ghosh NN, Roy K, Chandra R. Antihyperglycemic effect of a new thiazolidinedione analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats. Life Sci. 2007;80(12):1135-42. https://doi.org/10.1016/j. lfs.2006.12.004 PMid:17234217
Filipova E, Uzunova K, Kalinov K, Vekov T. Effects of pioglitazone therapy on blood parameters, weight and BMI: A meta-analysis. Diabetol Metab Syndr. 2017;9:90. https://doi. org/10.1186/s13098-017-0290-5 PMid:29163673
Ottum MS, Mistry AM. Advanced glycation end-products: Modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1-2. https://doi. org/10.3164/jcbn.15-3 PMid:26236094
Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat Rev Drug Discov. 2009;8(5):417-29. https://doi.org/10.1038/nrd2476 PMid:19404313
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. https://doi. org/10.1161/circresaha.110.223545 PMid:21030723
Zaitone SA, Barakat BM, Bilasy SE, Fawzy MS, Abdelaziz EZ, Farag NE. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: Influence on insulin resistance and energy expenditure. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(6):587-600. https:// doi.org/10.1007/s00210-015-1102-9 PMid:25708949
Chiou WF, Lin LC, Chen CF. Acteoside protects endothelial cells against free radical-induced oxidative stress. J Pharm Pharmacol. 2004;56(6):743-8. https://doi.org/10.1211/0022357023501 PMid:15231039
Sgarbossa A, Dal Bosco M, Pressi G, Cuzzocrea S, Dal Toso R, Menegazzi M. Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors. Chem Biol Interact. 2012;199(2):87-95. https://doi.org/10.1016/j.cbi.2012.06.006 PMid:22735309
Wang HQ, Xu YX, Zhu CQ. Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotox Res. 2012;21(4):368-78. https://doi.org/10.1007/ s12640-011-9292-5 PMid:22147269
Loria P, Lonardo A, Anania F. Liver and diabetes. A vicious circle. Hepatol Res. 2013;43(1):51-64. https://doi. org/10.1111/j.1872-034x.2012.01031.x PMid:23332087
Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can J Physiol Pharmacol. 2018;96(5):485-97. https://doi.org/10.1139/ cjpp-2017-0533 PMid:29244961
Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460-70. https://doi.org/10.2337/diabetes.54.8.2460 PMid:16046315
Esposito E, Mazzon E, Paterniti I, Dal Toso R, Pressi G, Caminiti R, et al. PPAR-alpha contributes to the anti-inflammatory activity of verbascoside in a model of inflammatory bowel disease in mice. PPAR Res. 2010;2010:917312. https:// doi.org/10.1155/2010/917312 PMid:20671911
Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sin B. 2017;7(4):427-38. https://doi.org/10.1016/j.apsb.2017.05.005 PMid:28752027
Downloads
Published
How to Cite
License
Copyright (c) 2020 Salma A. El-Marasy, Siham M. El-Shenawy, Fatma A. Moharram, Nagla A. El-Sherbeeny (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0