Polyisoprenoids from Avicennia marina induces on P13k, Akt1, Mammalian target of rapamycin, Egfr, and P53 Gene Expression Using Reverse Transcription-Polymerase Chain Reaction

Authors

  • Taufiq Qurrohman
  • Mohammad Basyuni Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia; Center of Excellence for Mangrove, Universitas Sumatera Utara, Medan 20155, Indonesia
  • Poppy Anjelisa Zaitun Hasibuan Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.3328

Keywords:

Cytotoxic, Polyisoprenoid, Avicennia marina, Apoptotic, Cell cycle

Abstract

BACKGROUND: According to the Global Cancer Observatory in 2018, Asia was the first to note the incidence of colon cancer, which was 51.8% of cases of colon cancer which ranked the top three in the number of causes of death in the world. Cancer is a disease characterized by uncontrolled cell growth. Potential natural ingredient developed as chemotherapeutic agents includes from mangrove leaves. Studies reporting on the pharmacological activity of polyisoprenoid from mangrove species are still limited, therefore, it is essential to achieve the prospects, potential, and mechanisms polyisoprenoid in mangroves as a natural ingredient of pharmaceutical and medication.

AIM: The aim of the study was to investigate the inhibition activities of polyisoprenoids in mangrove plant Avicennia marina in WiDr cells induces on P13k, Akt1, mammalian target of rapamycin (mTOR), Egfr, and P53 gene expression using reverse transcription-polymerase chain reaction (RT-PCR).

MATERIAL AND METHODS: The leaves of A. marina were dried and extracted with n-hexane followed by evaporation and freeze-drying. Polyisoprenoid contents were analyzed with two-dimensional thin-layer chromatography method. Cell viability was assessed with 3-(4,5-dimetiltiazol-2-il)-2,5-diphenyl tetrazolium bromide assay. The cycle cell was tested with flow cytometry method. The apoptotic test was determined with a double-staining method. The gene expression on P13k, Akt1, mTOR, Egfr, and P53 was analyzed by RT-PCR method.

RESULTS: The results showed that 48 h cytotoxic activity of polyisoprenoids against WiDr cells and 5-Fu (positive control) had IC50 values, 295.25 μg/mL and 17.43 μg/mL. Cell cycle analysis depicted that the inhibition of polyisoprenoid occurred in the G0-G1 phase and 5-Fu in S phase. Polyisoprenoid and 5-Fu had the same mechanism in the early apoptotic phase. RT-PCR revealed that polyisoprenoids downregulated the P13k, Akt1, mTOR, and Egfr gene expression, and however, upregulated P53 gene expression.

CONCLUSION: The present study confirmed that polyisoprenoids from A. marina leaves showing as chemopreventive agents for colon cancer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

IARC. Estimated Cancer Incidence, Mortality, and Prevalence Worldwide In 2012. Geneva: International Agency for Research on Cancer, World Health Organization; 2019. Available from: http://www.globocan.iarc.fr/pages/fact_sheets_cancer.aspx. [Last accessed on 2019 Jun 04].

Ferlay J, Soerjomataram I, Ervik M, DiControlhit R, Eser S, Mathers C, et al. Globocan 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer; 2013. https://doi. org/10.1002/ijc.29210

IARC. The High Incidence of Colorectal Cancer in the Country. Geneva: World Health Organization; 2014. http://www.who. int/mediacenter.factsheets/fs297/en. [Last accessed on 2019 Jun 05].

McDonald GT. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp Cell Res. 2010;316(19):3197-206. https://doi.org/10.1016/j. yexcr.2010.08.007 PMid:20736003

Kurnijasanti R, Hamid SI, dan Rahmawati K. Efek sitotoksik in vitro dari ekstrak buah mahkota dewa (Phaleria macrocarpa) terhadap kultur sel kanker mieloma. Media Eksakta. 2008;7(1):48-54. https://doi.org/10.23869/bphjbr.17.1.201114

Akter R, Uddin SJ, Grice ID, Tiralongo E. Cytotoxic activity screening of Bangladeshi medicinal plant extracts. J Nat Med. 2013;68(1):246-52. https://doi.org/10.1007/s11418-013-0789-5 PMid:23846168

Niranjana R, Gayathri R, Mol SN, Sugawara T, Hirata T, Miyashita K, et al. Carotenoids modulate the hallmar control of cancer cells. J Funct Foods. 2015;18:968-85. https://doi. org/10.1016/j.jff.2014.10.017

Sari PD, Basyuni M, Hasibuan AP. The inhibition of polyisoprenoids from NYPA fruticans leaves on cyclooxygenase 2 expression of widr colon cancer cells. Asians J Pharm Clin Res. 2018;11(8):154-7. https://doi.org/10.22159/ajpcr.2018. v11i8.26098

Illian ND, Basyuni M, Hasibuan AP. Polyisoprenoids from Avicennia marina and Avicennia lanata inhibit WiDr cells proliferation. Pharmacogn Mag. 2018;14(58):513-8. https://doi. org/10.4103/pm.pm_201_18

Basyuni M, Sagami H, Baba S, Oku H. Distribution, occurrence, and cluster analysis of new polyprenyl acetones and other polyisoprenoids from North Sumatra mangroves. Dendrobiology. 2017;78:18-31. https://doi.org/10.12657/denbio.078.003

Haryato H, Muhtadi M, Indrayudha P, Azizah T, Suhendi A. Cytotoxic Activity of Ethanol Extracts Plant Sala (Cynometra ramiflora Linn) Against HeLa Cells, T47D and WiDr. Vol. 18. Surakarta: Faculty of Pharmacy, University of Muhammadiyah; 2013. p. 21-7. https://doi.org/10.2174/2210289201304010091

Cancer Chemoprevention Research Centre. The Protocol of Cytotoxic Test MTT Method. Yogyakarta: Cancer Chemoprevention Research Centre; 2013. p. 1-8. Available from: http://www.ccrc.farmasi.ugm.ac.id/en/?page_id=240. [Last accessed on 2019 Jun 05].

Chevalley S, Coste A, Lopez A, Pipy B, Valentin A. Flow cytometry for the evaluation of anti-plasmodial activity of drugs on Plasmodium falciparum gametocytes. Malar J. 2010;9:49. https://doi.org/10.1186/1475-2875-9-49 PMid:20149239

Cancer Chemoprevention Research Centre. The Protocol of Apoptic Test Double Staining Method. Yogyakarta: Cancer Chemoprevention Research Centre; 2013. p. 1-4. Available from: http://www.ccrc.farmasi.ugm.ac.id/en/?page_id=240. [Last accessed on 2019 Jun 06].

Zhang Y, Guan XY, Dong B, Zhao M, Wu JH, Tian XY, et al. Expression of MMP-9 and WAVE3 in colorectal cancer and its relationship to clinicopathological features. J Cancer Res Clin Oncol. 2011;138(12):2035-44. https://doi.org/10.1007/ s00432-012-1274-3

Sudjadi S. Bioteknologi Kesehatan. Protokol Penggunaan RTPCR. Yogyakarta: Kanisius. 2008. p. 142.

Weerapreeyakul N, Nonpunya A, Barustux S, Thitimetharoch T, Spripanidkulchai B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin Med. 2012;7(1):15. https://doi.org/10.1186/1749-8546-7-15 PMid:22682026

Machana S, Weerapreeyakul N, Barusrux S, Nonpunya A, Sripanidkulchai B, Thitimetharoch T. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin Med. 2011;6(1):39. https://doi. org/10.1186/1749-8546-6-39 PMid:22041055

Satapathy S, Jena BK. Antitumor and growth effector screen of leaf extracts of selected mangroves of Bhitarkanika, Odisha. Int J Technol Enhanc Emerg Eng Res. 2013;1(4):25-30.

Illian ND, Basyuni M, Hasibuan AP, Sumardi S. Anticancer activity of polyisoprenoids from Avicennia alba Blume. In WiDr cells. Iran J Pharm Res. 2019;18(3):1477-87. https://doi. org/10.4103/pm.pm_201_18

Liu HC, Chen GG, Vlantis AC, Leung BC, Tong, MC, van Hasselt CA. 5-fluorouracil mediates apoptosis and G1/S arrest in laryngeal squamous cell carcinoma via a p53- independent pathway. Cancer J. 2006;12(6):482-93. https://doi. org/10.1097/00130404-200611000-00008 PMid:17207318

Lim YJ, Rhee JC, Bae YM, Chun WJ. Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells. World J Gastroenterol. 2007;13(13):1947 52. https://doi.org/10.3748/wjg.v13.i13.1947 PMid:17461495

Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99-102. https://doi.org/10.1038/5042 PMid:9916799

Ma J, Sawai H, Ochi N, Matsuo Y, Xu D, Yasuda A, et al. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem. 2009;331(1-2):161-71. https://doi.org/10.1007/ s11010-009-0154-x PMid:19437103

Jiménez C, Portela RA, Mellado M, Rodríguez-Frade JM, Collard J, Serrano A, et al. Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J Cell Biol. 2000;151(2):249-62. https://doi.org/10.1083/jcb.151.2.249 PMid:11038173

Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH, et al. The PI3K p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res. 2001;61:7426-9.

Foster DA. Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells. Biochim Biophys Acta. 2009;1791(9):949-55. PMid:19264150

Luo, Cai Y, Peng Z, Liu T, Yang S. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (Dragon fruit) peel. Chem Cent J. 2014;8(1):1. https://doi. org/10.1186/1752-153x-8-1 PMid:24386928

Wang S, Gu Y, Zebell SG, Anderson LK, Wang W, Mohan R, et al. A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe. 2014;16(6):787-94. https://doi.org/10.1016/j.chom.2014.10.005 PMid:25455564

Zhu J, Jiang J, Zhou W, Chen X. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 1998;58(22):5061-5. PMid:9823311

Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69(7):1237 45. https://doi.org/10.1016/0092-8674(92)90644-r PMid:1535557

Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351(6326):453-6. https://doi. org/10.1038/351453a0 PMid:2046748

Nakamura S, Katoh E, Koshikawa T, Yatabe Y, Nagasaka T, Ishida H, et al. Clinicopathologic study of nasal T/NK-cell lymphoma among the Japanese. Pathol Int. 1997;47(1):38-53. https://doi.org/10.1111/j.1440-1827.1997.tb04433.x PMid:9051691

Raju B, Mehrotra R, Oijordsbakken G, Al-Sharabi AK, Vasstrand EN, Ibrahim SO. Expression of p53, cyclin D1 and Ki-67 in pre-malignant and malignant oral lesions: Association with clinicopathological parameters. Anticancer Res. 2005;25(6C):4699-706. PMid:16334163

Yoon D, Wang Y, Stapleford K, Wiesmuller L, Chen J. P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol. 2004;336(3):639-54. https://doi.org/10.1016/j.jmb.2003.12.050 PMid:15095978

Downloads

Published

2020-04-20

How to Cite

1.
Qurrohman T, Basyuni M, Hasibuan PAZ. Polyisoprenoids from Avicennia marina induces on P13k, Akt1, Mammalian target of rapamycin, Egfr, and P53 Gene Expression Using Reverse Transcription-Polymerase Chain Reaction. Open Access Maced J Med Sci [Internet]. 2020 Apr. 20 [cited 2024 Mar. 28];8(A):146-52. Available from: https://oamjms.eu/index.php/mjms/article/view/3328

Most read articles by the same author(s)

1 2 > >>