Impact of Hydroxychloroquine on Fructose-induced Metabolic Syndrome in Rats: Promising Protective Effect

Authors

  • Ahmed Shata Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Clinical Pharmacy Department, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura, Dakhaliya, Egypt
  • Mahmoud A. Naga Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacology and Toxicology, AL-Qunfudah Medical College, Umm Al-Qura University, Makkah, Saudi Arabia
  • Basem H. Elsawy Department of Pathology, Mansoura University, Mansoura, Egypt; Department of Clinical Laboratory, College of Applied Medical Sciences, Taif University, Kingdom of Saudi Arabia
  • Abdel-Moneim Hafez Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; 7Department of Physiology, College of Medicine, Qassim University, Kingdom of Saudi Arabia

DOI:

https://doi.org/10.3889/oamjms.2020.3348

Keywords:

Hydroxychloroquine, Metabolic syndrome, Pancreas, Homeostatic model assessment, Blood lipids

Abstract

BACKGROUND: Hydroxychloroquine (HCQ) is used in the treatment of malaria and rheumatoid arthritis for a long time. Its effects on inflammation and immune modulation were noted.

AIM: This study aims to investigate the effects of HCQ in fructose-induced metabolic syndrome and to explore its possible mechanisms.

METHODS AND MATERIALS: Sixty male Sprague-Dawley rats were divided into Group I (negative control), Group II fed on high-fructose diet, and Group III fed on high fructose and subdivided into Group III-a (HCQ 50 mg/kg), Group III-b (HCQ 100 mg/kg), Group III-c (HCQ 200 mg/kg), and Group III-d (metformin 100 mg/kg). Body weight, blood glucose, liver enzymes, and lipid profile were measured. Insulin level, homeostatic model assessment (HOMA), soluble-intercellular adhesion molecule, and vascular cell adhesion molecule were assayed. Tumor necrosis factor (TNF)-α, adipokines (leptin, resistin, and adiponectin), and histological examination of pancreas were assessed.

RESULTS: HCQ induces good effects on lipid profile and improves significantly HOMA, endothelial stress markers, and adiponectin, and reduces leptin and TNF-α levels. In addition, significant improvement in structural changes was noted in pancreas with different doses of HCQ.

CONCLUSION: Favorable effects of HCQ in fructose-induced metabolic syndrome are promising and can be used early in those at risk of diabetes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Hu C, Lu L, Wan JP, Wen C. The pharmacological mechanisms and therapeutic activities of hydroxychloroquine in rheumatic and related diseases. Curr Med Chem. 2017;24(20):2241-9. https://doi.org/10.2174/0929867324666170316115938 PMid:28302011

Wang R, Xi L, Kukreja RC. PDE5 inhibitor tadalafil and hydroxychloroquine cotreatment provides synergistic protection against Type 2 diabetes and myocardial infarction in mice. J Pharmacol Exp Ther. 2017;361(1):29-38. https://doi. org/10.1124/jpet.116.239087 PMid:28123046.

Sheikhbahaie F, Amini M, Gharipour M, Aminoroaya A, Taheri N. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition. Adv Biomed Res. 2016;5(1):145. https://doi.org/10.4103/2277-9175.187401 PMid:27656614

Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA. 2007;298(2):187. https://doi.org/10.1001/jama.298.2.187 PMid:17622600

Pilla SJ, Quan AQ, Germain-Lee EL, Hellmann DB, Mathioudakis NN. Immune-modulating therapy for rheumatologic disease: Implications for patients with diabetes. Curr Diab Rep. 2016;16(10):91. https://doi.org/10.1007/s11892-016-0792-9 PMid:27525682

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 2017;4(4):851-63. https://doi.org/10.5114/ aoms.2016.58928 PMid:28721154

Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59(7):635-43. PMid:22322078

Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777-822. PMid:18971485

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome. Circulation. 2009;120(16):1640-5. PMid:19805654

Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in Type 2 diabetes patients. Diabetes Res Clin Pract. 2011;93(1):56-62. PMid:21146883

Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ. 2003;327(7421):951-3. https://doi.org/10.1136/bmj.327.7421.951 PMid:14576245

Al Dubayee MS, Alayed H, Almansour R, Alqaoud N, Alnamlah R, Obeid D, et al. Differential expression of human peripheral mononuclear cells phenotype markers in Type 2 diabetic patients and Type 2 diabetic patients on metformin. Front Endocrinol (Lausanne). 2018;9:537. https://doi.org/10.3389/ fendo.2018.00537 PMid:30356719

Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007;292(1):F423-9. https://doi.org/10.1152/ajprenal.00124.2006 PMid:16940562

Pareek A, Yeole P, Tenpe C, Chandurkar N, Payghan R. Effect of atorvastatin and hydroxychloroquine combination on blood glucose in alloxan-induced diabetic rats. Indian J Pharmacol. 2009;41(3):125. https://doi.org/10.4103/0253-7613.55213 PMid:20442820

Zayed EA, AinShoka AA, El Shazly KA, Abd El Latif HA. Improvement of insulin resistance via increase of GLUT4 and PPARγ in metabolic syndrome-induced rats treated with omega-3 fatty acid or l -carnitine. J Biochem Mol Toxicol. 2018;32(11):e22218. https://doi.org/10.1002/jbt.22218

Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem Ann Int J Biochem Lab Med. 1969;6(1):24-7.

Burtis CA, Ashwood ER, Bruns DE, Tietz NW. Tietz Fundamentals of Clinical Chemistry. Philadelphia, PA: Saunders Elsevier; 2008. p. 952.

Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077-80. https://doi. org/10.1093/clinchem/28.10.2077 PMid:6812986

Sun G, Bishop J, Khalili S, Vasdev S, Gill V, Pace D, et al. Serum visfatin concentrations are positively correlated with serum triacylglycerols and down-regulated by overfeeding in healthy young men. Am J Clin Nutr. 2007;85(2):399-404. https:// doi.org/10.1093/ajcn/85.2.399 PMid:17284735

Hettihewa LM, Palangasinghe S, Jayasinghe SS, Gunasekara SW, Weerarathna TP. Comparison of insulin resistance by indirect methods HOMA, QUICKI and McAuley - With fasting insulin in patients with Type 2 diabetes in Galle, Sri Lanka: A pilot study. Online J Heal Allied Sci. 2006;5(1):1-8. https://doi.org/10.4038/gmj.v12i1.1076

Ferreira L, Teixeira-de-Lemos E, Pinto F, Parada B, Mega C, Vala H, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of Type 2 diabetes (ZDF rat). Mediators Inflamm. 2010;2010:592760. https://doi.org/10.1155/2010/592760 PMid:20652060

Brownlee M. A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest. 2003;112(12):1788-90. https://doi. org/10.1172/jci200320501 PMid:14679173

Bevan A, Christensen J, Tikerpae J, Smith G. Chloroquine augments the binding of insulin to its receptor. Biochem J. 1995;311:787-95. https://doi.org/10.1042/bj3110787 PMid:7487933

Emami J, Pasutto FM, Mercer JR, Jamali F. Inhibition of insulin metabolism by hydroxychloroquine and its enantiomers in cytosolic fraction of liver homogenates from healthy and diabetic rats. Life Sci. 1999;64(5):325-35. https://doi.org/10.1016/ s0024-3205(98)00568-2 PMid:10072192

Abdel-Hamid AA, El-Firgany AE. Hydroxychloroquine hindering of diabetic isletopathy carries its signature on the inflammatory cytokines. J Mol Histol. 2016;47(2):183-93. https://doi. org/10.1007/s10735-016-9664-5 PMid:26872459

Batún-Garrido JA, Salas-Magaña M, Juárez-Rojop IE. Association between leptin and IL-6 concentrations with cardiovascular risk in patients with rheumatoid arthritis. Clin Rheumatol. 2018;37(3):631-7. https://doi.org/10.1007/ s10067-017-3897-x PMid:29101672

Morris S, Wasko M, Antohe J, Sartorius J, Kirchner H, Dancea S, et al. Hydroxychloroquine use associated with improvement in lipid profiles in rheumatoid arthritis patients. Arthritis Care Res (Hoboken). 2011;63(4):530-4.https://doi.org/10.1002/acr.20393

PMid:21452265

Tam L, Li E, Lam C, Tomlinson B. Hydroxychloroquine has no significant effect on lipids and apolipoproteins in Chinese systemic lupus erythematosus patients with mild or inactive disease. Lupus. 2000;9(6):413-6. https://doi. org/10.1191/096120300678828541

PMid:10981644

Karimifar M, Gharibdoost F, Akbarian M. Triglyceride and high-density lipoprotein levels as the markers of disease activity and their association with TNF-α and TNF receptor system in systemic lupus erythematosus. APLAR J Rheumatol. 2007;10:221-6. https://doi.org/10.1111/j.1479-8077.2007.00293.x

Rossoni C, Bisi M, Keiserman M, Staub H. Antimalarials and cholesterol profile of patients with systemic lupus erythematosus. Rev Bras Reumatol. 2011;51:383-7. https://doi.org/10.1590/ s0482-50042011000400009

PMid:21779713

Emami J, Pasutto FM, Jamali F. Effect of experimental diabetes mellitus and arthritis on the pharmacokinetics of hydroxychloroquine enantiomers in rats. Pharm Res. 1998;15(6):897-903.

PMid:9647356

Liu L, Ren J, He Z, Men K, Mao Y, Ye T, et al. Cholesterol-modified hydroxychloroquine-loaded nanocarriers in bleomycin-induced pulmonary fibrosis. Sci Rep. 2017;7(1):10737. https://doi. org/10.1038/s41598-017-11450-3

Oikarinen A. Hydroxychloroquine induces autophagic cell death of human dermal fibroblasts: Implications for treating fibrotic skin diseases. J Invest Dermatol. 2009;129(10):2333-5. https:// doi.org/10.1038/jid.2009.164

PMid:19749781

Li R, Lin H, Ye Y, Xiao Y, Xu S, Wang J, et al. Attenuation of antimalarial agent hydroxychloroquine on TNF-α-induced endothelial inflammation. Int Immunopharmacol. 2018;63:261- 9. https://doi.org/10.1016/j.intimp.2018.08.008

PMid:30121047

Jančinová V, Pažoureková S, Lucová M, Perečko T, Mihalová D, Bauerová K, et al. Selective inhibition of extracellular oxidants liberated from human neutrophils a new mechanism potentially involved in the anti-inflammatory activity of hydroxychloroquine. Int Immunopharmacol. 2015;28(1):175-81. https://doi. org/10.1016/j.intimp.2015.05.048

PMid:26071217

Bourke L, McCormick J, Taylor V, Pericleous C, Blanchet B, Costedoat-Chalumeau N, et al. Hydroxychloroquine protects against cardiac ischaemia/reperfusion injury in vivo via enhancement of ERK1/2 phosphorylation. PLoS One. 2015;10(12):e0143771. https://doi.org/10.1371/journal. pone.0143771

PMid:26636577

Masyuk AI, Masyuk TV, Pisarello MJ, Ding JF, Loarca L, Huang BQ, et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology. 2018;67(3):1088- 108. https://doi.org/10.1002/hep.29577 PMid:29023824

Izmirly P, Saxena A, Buyon JP. Progress in the pathogenesis and treatment of cardiac manifestations of neonatal lupus. Curr Opin Rheumatol. 2017;29(5):467-72. https://doi.org/10.1097/ bor.0000000000000414

PMid:28520682

Downloads

Published

2020-04-15

How to Cite

1.
Shata A, Naga MA, Elsawy BH, Hafez A-M. Impact of Hydroxychloroquine on Fructose-induced Metabolic Syndrome in Rats: Promising Protective Effect. Open Access Maced J Med Sci [Internet]. 2020 Apr. 15 [cited 2024 Nov. 23];8(A):153-9. Available from: https://oamjms.eu/index.php/mjms/article/view/3348