Decreased Expression of Peroxisome Proliferator-activated Receptor α Gene as an Indicator of Metabolic Disorders in Stunting Toddler

Authors

  • Khairun Nisa Berawi Departement of Biomolecular, Biochemistry and Physiology, Faculty of Medicine, University of Lampung, Indonesia; Molecular Genetics Laboratory, Faculty of Medicine, University of Padjadjaran, West Java, Indonesia
  • Ani Melani Maskoen Molecular Genetics Laboratory, Faculty of Medicine, University of Padjadjaran, West Java, Indonesia
  • Leva Akbar Departement of Physiology, Faculty of Medicine, University of Islam Bandung, West Java, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.3464

Keywords:

Stunting, Peroxisome proliferator-activated receptor α gene expression, Metabolic disorder

Abstract

BACKGROUND: Stunting in children increases the risk of degenerative diseases in adulthood, including dyslipidemia, obesity, type 2 diabetes mellitus, and cardiovascular disease. This is based on the result of metabolic changes that may be caused by chronic malnutrition and experienced by stunting children. Stunting in children is associated with metabolic disorders that are based on impaired fat oxidation, a trigger factor for obesity in adulthood. The peroxisome proliferator-activated receptor (PPAR) α gene is a transcriptional factor that regulates fat, carbohydrate, and amino acid metabolism whose genetic variants are linked to the development of dyslipidemia and cardiovascular disease.

AIM: The study assessed the effect of metabolic changes in stunting toddler on PPARα gene expression.

MATERIALS AND METHODS: An analytical-observational laboratory was done using 41 blood samples, coming from 23 stunting toddlers, and 18 not-stunting toddlers. In all research subjects, anthropometric measurements and examination of PPARα gene mRNA expression were carried out. Analysis of PPARα gene mRNA expression using one-step quantitative reverse transcriptase-polymerase chain reaction using specific primers, as a comparison of gene expression using the GAPDH gene. The relative expression of the PPARα mRNA gene was analyzed using the LIVAK formula.

RESULTS: The study obtained a mean of ΔCT in stunting toddlers of 5.81, whereas in stunting toddlers at 5.082. Analysis with LIVAK 2 ^ - formula (ΔCT stunting -ΔCT not stunting) obtained PPARα mRNA gene expression of 0.6.

CONCLUSION: We conclude that there is a decrease in PPARα gene expression in stunting toddlers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

de Onis M, Branca F. Childhood stunting: A global perspective. Matern child Nutr. 2016;12(1):12-26. https://doi.org/10.1111/ mcn.12231 PMid:27187907

Christian P, Lee SE, Angel MD, Adair LS, Arifeen SE, Ashorn P, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low-and middle-income countries. Int J Epidemiol. 2013;42(5):1340-55. PMid:23920141

Danaei G, Andrews KG, Sudfeld CR, Fink G, McCoy DC, Peet E, et al. Risk factors for childhood stunting in 137 developing countries: A comparative risk assessment analysis at global, regional, and country levels. PLoS Med. 2016;13(11):e1002164. https://doi.org/10.1371/journal.pmed.1002164 PMid:27802277

Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1(1):e26 36. https://doi.org/10.1016/s2214-109x(13)70006-8 PMid:25103583

Webb AL, Manji K, Fawzi WW, Villamor E. Time-independent maternal and infant factors and time-dependent infant morbidities including HIV infection, contribute to infant growth faltering during the first 2 years of life. J Trop Pediatr. 2009;55(2):83-90. https://doi.org/10.1093/tropej/fmn068 PMid:18723575

Wang H, Liddell CA, Coates MM, Mooney MD, Levitz CE, Schumacher AE. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9947):957-79. PMid:24797572

Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet. 2008;371(9608):243- 60. https://doi.org/10.1016/s0140-6736(07)61690-0 PMid:18207566

Hossain M, Choudhury N, Abdullah KA, Mondal P, Jackson AA, Walson J, et al. Evidence-based approaches to childhood stunting in low and middle income countries: A systematic review. Arch Dis Child. 2017;102(10):903-9. https://doi. org/10.1136/archdischild-2016-311050 PMid:28468870

Berawi KN, Hidayati MN, Susianti S, Perdami RR, Susantiningsih T, Maskoen AM. Decreasing zinc levels in stunting toddlers in lampung province, Indonesia. Biomed Pharmacol J. 2019;12(1):239-43. https://doi.org/10.13005/bpj/1633

El Taguri A, Betilmal I, Mahmud SM, Monem AA, Goulet O, Galan P, et al. Risk factors for stunting among under-fives in Libya. Public Health Nutr. 2009;12(8):1141-9. https://doi. org/10.1017/s1368980008003716 PMid:18789172

McArdle H, Laura A, Wyness A, Gambling L. Normal Growth and Development in Nutrition and Development: Short and Long Term Consequences for Health. Hoboken: British Nutrition Foundation, Wiley-Blackwell; 2013. https://doi. org/10.1002/9781118782972

Ikeda N, Irie Y, Shibuya K. Determinants of reduced child stunting in Cambodia: Analysis of pooled data from three demographic and health surveys. Bull World Health Organ. 2013;91(5):341-9. https://doi.org/10.2471/blt.12.113381 PMid:23678197

Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010;2010:612089. https://doi.org/10.1155/2010/612089 PMid:20936127

Rolfe ED, de França G, Vianna CA, Gigante DP, Miranda JJ, Yudkin JS, et al. Associations of stunting in early childhood with cardiometabolic risk factors in adulthood. PloS One. 2018;13(4):e0192196. https://doi.org/10.1371/journal. pone.0192196 PMid:29641597

AlSaleh A, Sanders TA, O’Dell SD. Effect of interaction between PPARG, PPARA and ADIPOQ gene variants and dietary fatty acids on plasma lipid profile and adiponectin concentration in a large intervention study. Proc Nutr Soc. 2012;71(1):141-53. https://doi.org/10.1017/s0029665111003181 PMid:22040870

Tai ES, Corella D, Deissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated fatty acids interact with the PPARA-L162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the framingham heart study. J Nutr. 2005;135:397-403. https://doi.org/10.1093/jn/135.3.397

Kidani Y, Bensinger SJ. LXR and PPAR as integrators of lipid homeostasis and immunity. Immunol Rev. 2014;249(1):72-83. PMid:22889216

Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4(4):439-52. PMid:23858092

Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care. 2011;34(9):2008 14. https://doi.org/10.2337/dc11-0093 PMid:21816979

Delerive P, De Bosscher K, Besnard S, Berghe WV, Peters JM, Gonzalez FJ, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem. 1999;274(45):32048-54. https://doi.org/10.1074/jbc.274.45.32048 PMid:10542237

Blaschke F, Takat Y, Caglayan E, Law RE, Hsueh WA. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in Type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26(1):28 40. https://doi.org/10.1161/01.atv.0000191663.12164.77 PMid:16239592

Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol. 2010;6(5):657-91. https://doi.org/10.2217/fca.10.86 PMid:20932114

Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol. 1999;10(3):245-57. https://doi.org/10.1097/00041433-199906000-00007 PMid:10431661

Robitaille J, Brouillette C, Houde A, Lemieux S, Perusse L, Tchernof A, et al. Association between the PPARalpha- L162V polymorphism and components of the metabolic syndrome. J Hum Genet. 2004;49:482-9. https://doi. org/10.1007/s10038-004-0177-9 PMid:15309680

Fruchart JC. Selective peroxisome proliferator-activated receptor α modulators (SPPARMα): The next generation of peroxisome proliferator-activated receptor α-agonists. Cardiovasc Diabetol. 2013;12:82. https://doi.org/10.1186/1475-2840-12-82 PMid:23721199

Dong K, Zhang MX, Liu Y, Su XL, Chen B, Zhang XL. Peroxisome Proliferator-activated receptor alpha expression changes in human pregnant myometrium. Reprod Sci. 2013;20(6):654-60. https://doi.org/10.1177/1933719112461187 PMid:23144166

Downloads

Published

2020-04-15

How to Cite

1.
Berawi KN, Maskoen AM, Akbar L. Decreased Expression of Peroxisome Proliferator-activated Receptor α Gene as an Indicator of Metabolic Disorders in Stunting Toddler. Open Access Maced J Med Sci [Internet]. 2020 Apr. 15 [cited 2024 Nov. 23];8(A):175-80. Available from: https://oamjms.eu/index.php/mjms/article/view/3464