Influence of Water Aging on Microtensile Bond Strength of a Flowable and a Packable Bulk-fill Resin Composites to Dentin
DOI:
https://doi.org/10.3889/oamjms.2020.3652Keywords:
Nnohybrid, packable bulk fill, flowable bulk fill, micro-tensile bond strengthAbstract
AIM: Investigation of the aging effect on the microtensile bond strength (μTBS) of bulk-fill resin composite (RC) versus a conventionally incrementally applied one.
MATERIALS AND METHODS: A total number of 45 sound human impacted third molars extracted molars have been selected to prepare specimens for the μTBS test. Teeth were randomly divided into three groups (C) according to type of RC material which used for restoring the teeth. Where nanohybrid RC (Grandio®SO) was used as the control Group (C1), packable bulk-fill RC (X-tra fil®) was used for restoring teeth in C2 group and flowable bulk-fill RC (X-tra base®) was used for restoring teeth in C3 group. Each group was further subdivided into 3 subgroups (n = 5) according to the water storage time, where in subgroup 1; teeth were stored for 24 h, subgroup 2; teeth were stored for 3 months while for subgroup 3; and teeth were stored for 6 months. After water storage, teeth were sectioned for preparation of μTBS testing beams. Maximum tensile stresses were recorded in megapascal (MPa).
RESULTS: After 24 h of water storage, the X-tra base® showed a higher statistically significant μTBS to dentin (33.82 ± 9.84 MPa) than did the other two types of RCs. After 3 months, the X-tra fil® showed the lowest mean value of μTBS (10.90 ± 5.66 MPa), meanwhile, after 6 months of water storage Grandio®SO showed the highest mean value of μTBS (15.85 ± 6.76 MPa). Regardless of the time the X-tra fil® showed the lowest mean of μTBS (15.07 ± 11.73 MPa), while there is no significant difference between the X-tra base® and Grandio®SO. Furthermore, the water aging adversely affects μTBS values which deceased gradually by time.
CONCLUSION: The packable bulk-fill RC characterized by lower μTBS to dentin in comparison to the flowable bulk fill and the incrementally applied nanohybrid RCs. Furthermore, the μTBS of the three tested materials decreased gradually by aging.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent. 2012;40(6):500-5. https://doi.org/10.1016/j. jdent.2012.02.015 PMid:22390980
Rullmann I, Schattenberg A, Marx M, Willershausen B, Ernst CP. Photoelastic determination of polymerization shrinkage stress in low-shrinkage resin composites. Schweiz Monatsschr Zahnmed. 2012;122(4):294-9. PMid:22513711
Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent. 2011;39(10):643-7. https://doi.org/10.1016/j.jdent.2011.07.004 PMid:21801799
Rees JS, Jagger DC, Williams DR, Brown G, Duguid W. A reappraisal of the incremental packing technique for light cured resin composites. J Oral Rehabil. 2004;31(1):81-4. https://doi. org/10.1046/j.0305-182x.2003.01073.x PMid:15125602
Xavier JC, Monteiro GQ, Montes MA. Polymerization shrinkage and flexural modulus of flowable dental composites. Mat Res. 2010;13(3):381-4. https://doi.org/10.1590/ s1516-14392010000300017
Lazarchik DA, Hammond BD, Sikes CL, Looney SW, Rueggeberg FA. Hardness comparison of bulk-filled/transtooth and incremental-filled/occlusally irradiated resin composites. J Prosthet Dent. 2007;98(2):129-40. https://doi.org/10.1016/ s0022-3913(07)60046-8 PMid:17692594
El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent Mater. 2012;28(8):928-35. https://doi.org/10.1016/j.dental.2012.04.038 PMid:22656273
Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal Movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31(6):437-44. https://doi.org/10.1016/ s0300-5712(02)00121-5 PMid:12878027
Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate based dental composite technology and curing efficiency. Dent Mater. 2013;29:139-56. https://doi. org/10.1016/j.dental.2012.11.005 PMid:23199807
Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2013;17:227-35. https://doi.org/10.1007/s00784-012-0702-8 PMid:22411261
EL-Damanhoury H, Platt J. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent. 2014;39(4):374-82. https://doi.org/10.2341/13-017-l PMid:23865582
Benetti AR, Havndrup-Pedersen C, Honoré D, Pedersen MK, Pallesen U. Bulk fill resin composites: Polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015;40(2):190-200. https://doi.org/10.2341/13-324-l PMid:25216940
Unlu N, Gunal S, Ulker M, Ozer F, Blatz MB. Influence of operator experience on in vitro bond strength of dentin adhesives. J Adhes Dent. 2012;14(3):223-7. PMid:22043471
Son SA, Park JK, Seo DG, Ko CC, Kwon YH. How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites? Clin Oral Investig. 2017;21(2):559-65. https://doi. org/10.1007/s00784-016-1920-2 PMid:27475636
Fronza BM, Ayres A, Pacheco RR, Rueggeberg FA, Dias C, Giannini M. Characterization of inorganic filler content, mechanical properties, and light transmission of bulk-fill resin composites. Oper Dent. 2017;42(4):445-55. https://doi. org/10.2341/16-024-l PMid:28402731
Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl. Germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24(7):901-7. https://doi.org/10.1016/j.dental.2007.11.004 PMid:18155290
Van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumans M, Van Meerbeek B. Bulk-filling of high C-factor posterior cavities: Effect on adhesion to cavity-bottom dentin. Dent Mater. 2013;29(3):269-77. https://doi.org/10.1016/j.dental.2012.11.002 PMid:23228335
Van Ende A, De Munck J, Van Landuyt K, Van Meerbeek B. Effect of bulk-filling on the bonding efficacy in occlusal Class I cavities. J Adhes Dent. 2016;18(2):119-24. PMid:27042703
Juloski J, Carrabba M, Aragoneses JM, Forner L, Vichi A, Ferrari M. Microleakage of Class II restorations and microtensile bond strength to dentin of low-shrinkage composites. Am J Dent. 2013;26(5):271-7. PMid:24479279
Al-Harbi F, Kaisarly D, Michna A, ArRejaie A, Bader D, El Gezawi M. Cervical interfacial bonding effectiveness of Class II bulk versus incremental fill resin composite restorations. Oper Dent. 2015;40(6):622-35. https://doi.org/10.2341/14-152-l PMid:26151459
Mandava J, Vegesna DP, Ravi R, Boddeda MR, Uppalapati LV, Ghazanfaruddin MD. Microtensile bond strength of bulkfill restorative composites to dentin. J Clin Exp Dent. 2017;9(8):e1023-8. PMid:28936294
Syam AN, Gamal S, Sabra MM. Evaluation of micro-tensile bond strength of new composite resins with dentin: An in vitro study. Adv Dent J. 2019;1:37-43. https://doi.org/10.21608/ adjc.2019.40258
Grandi VH, Berger SB, Fugolin AP, Gonini-Júnior A, Lopes MB, Consani S, et al. Microtensile bond strength and microhardness of composite resin restorations using a sonic-resin placement system. Braz Dent J. 2017;28(5):618-23. https://doi. org/10.1590/0103-6440201701469 PMid:29215688
Armstrong S, Breschi L, Özcan M, Pfefferkorn F, Ferrari M, Van Meerbeek B. Academy of dental materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/ enamel using micro-tensile bond strength (μTBS) approach. Dent Mater. 2017;33(2):133-43. https://doi.org/10.1016/j. dental.2016.11.015 PMid:28007396
Pereira R, Lima DA, Giorgi MC, Marchi GM, Aguiar FH. Evaluation of bond strength, nanoleakage, and marginal adaptation of bulkfill composites submitted to thermomechanical aging. J Adhes Dent. 2019;21(3):255-64. PMid:31165105
Manhart J, Chen H, Hamm G, Hickel R. Buonocore memorial lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent. 2004;29(5):481-508. PMid:15470871
Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent Mater. 2005;21(10):962-70. https://doi.org/10.1016/j.dental.2005.04.018 PMid:16085301
Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: The influence of stress development versus stress relief. Oper Dent. 1996;21(1):17-24. PMid:8957911
Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent Mater. 2013;29(1):59-84. https://doi.org/10.1016/j.dental.2012.07.158 PMid:22920539
Ikeda I, Otsuki M, Sadr A, Nomura T, Kishikawa R, Tagami J. Effect of filler content of flowable composites on resincavity interface. Dent Mater. 2009;28(6):679-85. https://doi. org/10.4012/dmj.28.679 PMid:20019418
Alrahlah A, Silikas N, Watts DC. Hygroscopic expansion kinetics of dental resin-composites. Dent Mater. 2014;30(2):143-8. https://doi.org/10.1016/j.dental.2013.10.010 PMid:24268572
Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J Dent. 2015;43(11):1358-64. https://doi.org/10.1016/j.jdent.2015.07.014 PMid:26232610
Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater. 2005;21(1):36-42. https://doi.org/10.1016/j. dental.2004.10.004 PMid:15681000
Ilie N, Bucuta S, Dreaenert M. Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Oper Dent. 2013;38:618-25. https://doi.org/10.2341/12-395-l PMid:23570302
Behery H, El-Mowafy O, EL-Badrawy W, Saleh B, Nabih S. Cuspal deflection of premolars restored with bulk-fill resin composites. J Esthet Restor Dent. 2016;28:122-30. https://doi. org/10.1111/jerd.12188 PMid:26892364
Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Longterm sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J Dent. 2015;43(12):1511-8. https://doi.org/10.1016/j.jdent.2015.10.001 PMid:26455541
Sagsoz O, Ilday NO, Karatas O, Cayabatmaz M, Parlak H, Olmez MH, et al. The bond strength of highly filled flowable composites placed in two different configuration factors. J Conserv Dent. 2016;19(1):21-5. https://doi.org/10.4103/0972-0707.173188 PMid:26957788
Bucuta S, Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014;18(8):1991-2000. https://doi. org/10.1007/s00784-013-1177-y PMid:24414570
Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42(8):993-1000. https://doi.org/10.1016/j.jdent.2014.05.009 PMid:24874951
Ahmed HS, Niazy MA, Riad MI, Yaseen AA. In-vivo bond degradation resistance and in-vitro degree of conversion of bulk fill versus nano filled resin composite restoratives. ADJ Girls. 2017;4:33-40. https://doi.org/10.21608/adjg.2017.5193
Makishi P, André CB, Ayres A, Martins AL, Giannini M. Effect of storage time on bond strength and nanoleakage expression of universal adhesives bonded to dentin and etched enamel. Oper Dent. 2016;41(3):305-17. https://doi.org/10.2341/15-163-l PMid:26666389
Fronza BM, Makishi P, Sadr A, Shimada Y, Sumi Y, Tagami J, et al. Evaluation of bulk-fill systems: microtensile bond strength and non-destructive imaging of marginal adaptation. Braz Oral Res. 2018;32:e80. https://doi.org/10.1590/1807-3107bor-2018. vol32.0080 PMid:30088553
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Ayah Atif Selim, Ahmed Fawzy Abo Elezz, Rehab Khalil Safy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0