Effect of Glucocorticoids Following Application of Adenosine Receptor Blockers in Patients with Chronic Obstructive Bronchitis and Bronchial Asthma
DOI:
https://doi.org/10.3889/oamjms.2020.3894Keywords:
Bronchial asthma, Chronic obstructive pulmonary disease, Budesonide, Fluticasone, DoxofyllineAbstract
AIM: The effects of the glucocorticoids (GR) fluticasone and budesonide and a blocker of the adenosine receptor in the treatment of patients with chronic obstructive pulmonary disease (COPD) and bronchial asthma were studied in this work.
METHODS: The parameters of lung function were determined with body plethysmography. Airway resistance (Raw) was registered and measured and the intrathoracic gas volume and specific resistance (SRaw) of the airways were also calculated.
RESULTS: The results of this study of patients with COPD and bronchial asthma used doxofylline as a blocker of the adenosine receptor. Doxofylline was given orally on 7 consecutive days at home with a dose of 2 × 400 mg orally. Raw and IGTV were then measured, and SRaw was calculated. The results indicated a significant decrease in the airway specific resistance (p < 0.05). On the 8th day, the same patients were given two inhalations with spray fluticasone and budesonide (budesonide, 2 inh × 2 mg; Pulmicort 2 inh × 125 mcg). After the inhalations were given, Raw and IGTV were measured after 5, 15, 30, 60, and 120 min, SRaw was then calculated.
CONCLUSION: After the preliminary application of doxofylline, the GRs fluticasone and budesonide have a significant effect (p < 0.01) on the decrease of the airway SRaw. This effect suggests that the blocking effect of the adenosine receptor (p < 0.05) emphasizes the bronchodilation effect of GRs (p < 0.01).
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Fredholm BB, Persson CG. Xanthine derivaties as adenosine receptor antagonists. Eur J Pharmacol. 1982;87(4):673-6. https://doi.org/10.1016/0014-2999(82)90359-4 PMid:6288418
Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ. Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2005;288(3):H1411-6. https://doi. org/10.1152/ajpheart.00684.2004 PMid:15539423
Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: A positron emission tomography study. J Neurosci. 2007;27(9):2410-5. https://doi. org/10.1523/jneurosci.5066-06.2007 PMid:17329439
Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility. Chem Rev. 2008;108(1):238-63. https://doi. org/10.1021/cr0682195 PMid:18181659
Osadchii OE. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther. 2007;21(3):171-94. https://doi.org/10.1007/ s10557-007-6014-6 PMid:17373584
Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to devrease inflammatory gene expression. Proc Natl Acad Sci USA. 2002;99:8921-6. https:// doi.org/10.1073/pnas.132556899 PMid:12070353
Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol. 1996;118(6):1461-8. https://doi. org/10.1111/j.1476-5381.1996.tb15561.x PMid:8832073
Peterfreund RA, MacCollin M, Gusella J, Fink JS. Characterization and expression of the human A2A adenosine receptor gene. J Neurochem. 1996;66(1):362-8. https://doi. org/10.1046/j.1471-4159.1996.66010362.x PMid:8522976
Feoktistov I, Murray JJ, Biaggioni I. Positive modulation of intracellular Ca2+ levels by adenosine A2b receptors, prostacyclin, and prostaglandin E1 via a cholera toxin-sensitive mechanism in human erythroleukemia cells. Mol Pharmacol. 1994;45(6):1160-7. PMid:8022409
Corset V, Nguyen-Ba-Charvet KT, Forcet C, Moyse E, Chédotal A, Mehlen P. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2B receptor. Nature. 2000;407(6805):747-50. https://doi. org/10.1038/35037600 PMid:11048721
Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, et al. Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol. 1993;44(3):524-32. PMid:8396714
Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A. 1993;90(21):10365- 9. https://doi.org/10.1073/pnas.90.21.10365 PMid:8234299
Jacobson KA. Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol Sci. 1998;19(5):184-91. https://doi.org/10.1016/s0165-6147(98)01203-6 PMid:9652191
Fredholm BB, Irenius E, Kull B, Schulte G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol. 2001;61(4):443-8. https://doi.org/10.1016/ s0006-2952(00)00570-0 PMid:11226378
Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA. Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J Neurosci. 1997;17(2):607-14. https://doi. org/10.1523/jneurosci.17-02-00607.1997 PMid:8987783
Von Lubitz DK. Adenosine and cerebral ischemia: Therapeutic future or death of a brave concept? Eur J Pharmacol. 1999;365(1):9-25. https://doi.org/10.1016/ s0014-2999(98)00788-2 PMid:9988118
Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y. Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res. 2006;84(8):1848-55. https:// doi.org/10.1002/jnr.21071 PMid:17016854
Scott JP, Peters-Golden M. Antileukotriene agents for the treatment of lung disease. Am J Respir Crit Care Med. 2013;5:538-44. PMid:23822826
Morina N, Haliti A, Iljazi A, Islami D, Bexheti S, Bozalija A, et al. Comparison of effect of leukotriene biosynthesis blockers and inhibitors of phosphodiesterase enzyme in patients with bronchial hyperreactivity. Maced J Med Sci. 2018;6(5):777-81. https://doi.org/10.3889/oamjms.2018.187 PMid:29875845
Hyseini K, Iljazi A, Morina N, Iljazi F, Islami H. Comparison of methylxanthines (doxofylline and diprophylline) effect in patients with bronchial hyperreactivity and bronchial asthma. Res J Pharm Biol Chem Sci. 2017;8(5):500-9. https://doi.org/10.5455/ aim.2016.24.16-19
Lajqi N, Ilazi A, Kastrati B, Islami H. Comparison of glucocorticoid (budesonide) and antileukotriene (montelukast) effect in patients with bronchial asthma determined with body plethysmography. Acta Inform Med. 2015;23(6):347-51. https://doi.org/10.5455/ aim.2015.23.347-351 PMid:26862243
Barnes PJ. Inhaled corticosteroids. Pharmaceuticals. 2010;3(3):514-40. PMid:27713266
Barnes PJ. Corticosteroid therapy for asthma. Pulmo RJ. 2012;21:53-9.
Anthracopoulos MB, Priftis KN, Russell G. Safety of inhaled corticosteroids. Why the variation in systemic adverse effects? Curr Pediatr Rev. 2008;4:198-215. https://doi. org/10.2174/157339608785856018
Adams N, Lasserson TJ, Cates CJ, Jones PW. Fluticasone versus beclomethasone or budesonide for chronic asthma in adults and children. Cochrane Database Syst Rev. 2007;4:CD002310. https://doi.org/10.1002/14651858.cd002310.pub4 PMid:17943772
Guilbert TW, Mauger DT, Allen DB. Growth of preschool children at high risk for asthma 2 years after discontinuation of fluticasone. J Allergy Clin Immunol. 2011;128(5):956-63.e1-7. PMid:21820163
Wolthers OD, Walters EG. Short-term lower leg growth in 5-to 11-year-old asthmatic children using beclomethasone dipropionate inhalers with chlorofluorocarbon or hydrofluoroalkane propellants: A 9-week, open-label, randomized, crossover, noninferiority study. Clin Ther. 2011;33(8):1069-76. https://doi. org/10.1016/j.clinthera.2011.06.015 PMid:21784529
Adcock IM, Barnes PJ. Ligand-induced diff erentiation of glucocorticoid receptor (GR) transrepression and transactivation. Biochem Soc Trans. 1996;24(2):267S. https://doi.org/10.1042/ bst024267s PMid:8736925
Vayssiere BM, Dupont S, Choquart A. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol. 1997;11(9):1245-55. https://doi.org/10.1210/me.11.9.1245 PMid:9259316
Barnes PJ, Karin M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066-71. https://doi.org/10.1056/ nejm199704103361506 PMid:9091804
Reber LL, Daubeuf F, Plantinga M. A dissociated glucocorticoid receptor modulator reduces airway hyperresponsiveness and inflammation in a mouse model of asthma. J Immunol. 2012;188(7):3478-87. https://doi.org/10.4049/jimmunol.1004227 PMid:22393156
Liberman AC, Antunica-Noguerol M, Ferraz-de-Paula V. Compound dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells. PLOS One 2012;7(4):35155. https://doi.org/10.1371/ annotation/12a8fc89-5f47-4bad-8863-863d99a0e52d PMid:22496903
Schäcke H, Zollner TM, Döcke WD. Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of infl amatory skin diseases. Br J Pharmacol. 2009;158:1088-103. https://doi. org/10.1111/j.1476-5381.2009.00238.x PMid:19422381
Zhang J, Cavet M, Meid KR. BOL-303242-X, a novel selective glucocorticoid receptor agonist, with full anti-inflammatory properties in human ocular cells. Mol Vis. 2009;15:2606-16. PMid:20011631
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Driton Shabani, Lirim Mustafa, Pellumb Islami, Ali Iljazi, Arta Dauti, Hilmi Islami (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0