Blood Cholinesterase Level is Associated with Cognitive Function in Indonesian School-age Children Exposed to Pesticides
DOI:
https://doi.org/10.3889/oamjms.2020.3985Keywords:
pesticide exposure, cholinesterase level, cognitive function, farmerAbstract
BACKGROUND: Pesticides are known as depressors of acetylcholinesterase (AChE) activity, resulting in the nervous system toxicity. The previous studies have described associations between AChE, a stable marker of pesticide poisoning, and cognitive performance in children.
AIM: This study aimed to identify the association between blood AChE level and cognitive function in children exposed to pesticides in the Magelang Regency, Indonesia.
METHODS: A cross-sectional study involving school-age children with a history of pesticide exposure in Ngablak, Magelang Regency, Central Java, Indonesia, was conducted. Blood AChE level was evaluated, and the Modified Mini–Mental State Examination for Children (MMMSEC) was used to analyze the cognitive function of the children.
RESULTS: In total, 56 subjects aged between 9 and 11 years were included in this study. Median blood AChE level was 9.64 kIU/L, and 24 subjects (42.9%) had low blood AChE levels. Median MMMSEC score was 33. Eleven subjects (19.6%) were found to have abnormal cognitive function. Bivariate analysis showed that blood AChE level was associated with MMMSEC score (r = 0.343, p = 0.010). Multiple linear regression showed that blood AChE level had a positive association with cognitive function in children, assessed using the MMMSEC score (β = 0.360; p = 0.006). Further analysis showed that the attention and orientation (memory function) domains of the MMMSEC were significantly associated with blood AChE level (β: 0.371 and 0.297, respectively, p < 0.05).
CONCLUSIONS: Blood AChE level, a stable marker of pesticide poisoning, was positively associated with cognitive function in children, as assessed using the MMMSEC score. In particular, the orientation and attention domains of the MMMSEC were associated with blood AChE level.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Djunaedy A. Biopestisida sebagai pengendali organisme pengganggu tanaman (OPT) yang ramah lingkungan. Embryo. 2009;6(1):88-95.
Hidayah N, Suhartono, Endahwahyuningsih N, Apoina, Budiono. Riwayat paparan pestisida dan kadar insulin like growth factor I (IGF-1) pada siswa SD negeri Dukuhlo 01 kecamatan Bulakamba kabupaten Brebes. J Health Educ. 2016;l(1):26-32. https://doi.org/10.14710/jkli.15.2.42-45
Perwitasari DA, Prasasti D, Supadmi W, Jaikishin SA, Wiraagni IA. Impact of organophosphate exposure on farmers’ health in Kulon Progo, Yogyakarta: Perspectives of physical, emotional and social health. SAGE Open Med. 2017;5:1-6. https://doi.org/10.1177/2050312117719092 PMid:28839934
Suarez-Lopez JR, Himes JH, Jacobs DR Jr., Alexander BH, Gunnar MR. Acetylcholinesterase activity and neurodevelopment in boys and girls. Pediatrics. 2013;132(6):1649-58. https://doi.org/10.1542/peds.2013-0108 PMid:24249815
Suarez-Lopez JR, Checkoway H, Jacobs DR Jr., Al-Delaimy WK, Gahagan S. Potential short-term neurobehavioral alterations in children associated with a peak pesticide spray season: The mother’s day flower harvest in Ecuador. Neurotoxicology. 2017;60:125-33. https://doi.org/10.1016/j.neuro.2017.02.002 PMid:28188819
Miswon NH, Hashim Z, How V, Chokeli R. Blood cholinesterase level and learning ability of primary school children in an agricultural village, Tanjung Karang, Malaysia. Br J Med MedRes. 2015;8(1):52-60. https://doi.org/10.9734/bjmmr/2015/16804
Kapka-Skrzypczak L, Sawicki K, Czajka M, Turski WA, Kruszewski M. Cholinesterase activity in blood and pesticide presence in sweat as biomarkers of children`s environmental exposure to crop protection chemicals. Ann Agric Environ Med. 2015;22(3):478-82. https://doi.org/10.5604/12321966.116771
PMid:264031198. Lizardi PS, O’Rourke MK, Morris RJ. The effects of organophosphate pesticide exposure on Hispanic children’s cognitive and behavioral functioning. J Pediatr Psychol. 2008;33(1):91-101. https://doi.org/10.1093/jpepsy/jsm047 PMid:17569709
London L, Beseler C, Bouchard MF,Bellinger DC, Colosio C, Grandjean P, et al. Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology. 2012;33(4):887-96. https://doi.org/10.1016/j.neuro.2012.01.004 PMid:22269431
Hamzah NA, Hashim Z, Miswon N, Baguma D. Blood cholinesterase level and cognitive functioning among primary school children near paddy field in Tanjung Karang, Selangor. Aust J Basic Appl Sci. 2015;9(22):49-55.
Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: Review of the epidemiologic and animal studies. J Toxicol Environ Health B Crit Rev. 2013;16(3-4):127-283. https://doi.org/10.1080/10937404.2013.783383 PMid:23777200
Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. Biomed Res Int. 2013;2013:321213. https://doi.org/10.1155/2013/321213 PMid:23936791
Prijanto TB. Analisis Faktor Risiko Keracunan Pestisida Organofosfat Pada Keluarga Petani Holtikultura di Kecamatan Ngablak Kabupaten Magelang. Indonesia: Universitas Diponegoro; 2009.
Rasipin. Faktor-faktor Yang Berhubungan Dengan Kejadian Goiter Pada Siswa-Siswa SD di Wilayah Pertanian (Penelitian di Kecamatan Buakamba Kabupaten Brebes). Master’s Thesis. Indonesia: Universitas Diponegoro; 2011. https://doi.org/10.14710/jkli.16.1.22-28
Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9 PMid:13726518
Jain M, Passi GR. Assessment of a modified mini-mental scale for cognitive functions in children. Indian Pediatr. 2005;42(9):907-12. PMid:16208050
Thursina C, Ar Rochmah M, Nurputra DK, Harahap IS, Harahap NI, Sa’Adah N, et al. Attention deficit/hyperactivity disorder (ADHD): Age related change of completion time and error rates of Stroop test. Kobe J Med Sci. 2015;61(1):E19-26. PMid:25868610
Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology. 2013;39:158-68. https://doi.org/10.1016/j.neuro.2013.09.003 PMid:24121005
Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196-201. https://doi.org/10.1201/b18221-17 PMid:21507777
Rauh VA, Perera, FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci USA. 2012;109(20):7871-876. https://doi.org/10.1073/pnas.1203396109 PMid:22547821
Berkowitz GS, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, et al. In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect. 2004;112(3):388-91. https://doi.org/10.1289/ehp.6414 PMid:14998758
Gastaldi R, Muraca M, Beltramo A, Poggi E. Iodine deficiency and its consequences for cognitive and psychomotor development of children. Ital J Pediatr. 2014;40(1):A15. https://doi.org/10.1186/1824-7288-40-s1-a15
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Rusdy Ghazali Malueka, Andrianor Rahman, Ery Kus Dwianignsih, Andre Stefanus Panggabean, Halwan Fuad Bayuangga, Sarastiti Alifaningdyah, Meutia Rizki Innayah, Sri Awalia Febriana, Indarwati Setyaningsih, Cempaka Thursina Srie Setyaningrum, Abdul Gofir, Sri Sutarni, Ismail Setyopranoto (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0