Growth, Development, and Quality of Life in Children with Congenital Heart Disease Children

Authors

  • Sri Maya Department of Child Health, Sondosia General Hospital, Bima, West Nusa Tenggara, Indonesia
  • Eka Gunawijaya Department of Child Health, Faculty of Medicine, Udayana University, Denpasar, Indonesia
  • N. P. Veny Kartika Yantie Department of Child Health, Faculty of Medicine, Udayana University, Denpasar, Indonesia
  • I. G. A. Trisna Windiani Department of Child Health, Faculty of Medicine, Udayana University, Denpasar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.4047

Keywords:

Congenital heart disease, Cognitive, Quality of life

Abstract

BACKGROUND: Despite the advances in medical and surgical care have improved the survival rates of children with congenital heart disease (CHD), they still remain risky for nutritional, cognitive problems, and quality of life. Those impacts vary according to the severity of heart lesions and still manifested years after surgery.

AIM: The objective of this study was to compare growth, development, and quality of life between cyanotic and acyanotic CHD in 52 patients aged 24–69 months old from June to January 2018 in Sanglah Pediatric Cardiology clinic used WHO Anthro software, The Mullen Scales of Early Learning and PedsQL Cardiac module.

RESULTS: We found significant different proportion of underweight 11.5% in acyanotic children, 42.3% in cyanotic by weight/age z-score <−2SD (p = 0.033). Height/ age z-score <−3SD 38.5% in cyanotic versus 11.5% in acyanotic (p = 0.025). The cyanotic showed a significant difference in cognitive function, presented by early learning composite score (p = 0.044) particularly in gross motor (p = 0.034) and receptive language (0.047). Quality of life differs significantly between both groups in heart problem and therapy (p = 0.042), treatment anxiety (p = 0.016), cognitive problems (p = 0.038), and communication (p = 0.022).

CONCLUSION: Development, growth problems, and lower quality of life are common in cyanotic children, thus highlight the need for longitudinal surveillance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ulfah DA, Lestari ED, Harsono S. The effect of cyanotic and acyanotic congenital heart disease on children’s growth velocity. Paediatr Indones. 2017;57(3):159-62. https://doi.org/10.14238/ pi57.3.2017.160-3

Van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, et al. Birth prevalence of congenital heart disease worldwide a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241-7. https://doi.org/10.1016/j. jacc.2011.08.025 PMid:22078432

Nasiruzzaman AH, Hussain MZ, Baki MA, Tayeb MA, Mollah MN. Growth and developmental status of children with congenital heart disease. Bangladesh Med J. 201I;4(2):54-8. https://doi. org/10.3329/bmj.v40i2.18512

Karthiga S, Pathak S, Lazarus M. Clinical and anthropometric profile of congenital heart disease in children admitted in pediatric. Int J Sci Stud. 2017;5(5):112-7.

Mussatto KA, Hoffmann RG, Hoffman GM, Tweddell JS, Bear L, Cao Y, et al. Risk and prevalence of developmental delay in young children with congenital heart disease. Pediatrics. 2014;133(3):e570-7. https://doi.org/10.1542/peds.2013-2309 PMid:24488746

Bryn J, Frank M, Owen L, Lynne M, Robert J. Neurodevelopmental outcome following open heart surgery in infancy: 6-year follow-up. Cardiol Young. 2015;25(5):903-10. https://doi. org/10.1017/s1047951114001140 PMid:25008002

Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW. Brain in congenital heart disease across the lifespan: The cumulative burden of injury. Circulation. 2016;133(20):1951-62. https://doi.org/10.1161/circulationaha.115.019881 PMid:27185022

Mussatto KA, Hoffmann R, Hoffman G, Tweddell JS, Bear L, Cao Y, et al. Risk factors for abnormal developmental trajectories in young children with congenital heart disease. Circulation. 2016;132(8):755-61. https://doi.org/10.1161/ circulationaha.114.014521 PMid:26304667

Khalil A, Suff N, Thilaganathan B, Hurrell A, Cooper D, Carvalho JS. Brain abnormalities and neurodevelopmental delay in congenital heart disease: Systemic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;43(1):14-24. https:// doi.org/10.1002/uog.12526 PMid:23737029

Blasquez A, Clouzeau H, Fayon M, Mouton JB, Thambo JB, Enaud R, Lamireau T. Evaluation of nutritional status and support in children with congenital heart disease. Eur J Clin Nutr. 2016;70(4):528-31. https://doi.org/10.1038/ejcn.2015.209

PMid:26695725

Eren E, Cakir ED, Bostan O, Saglam H, Tarim O. Evaluation of endocrine functions in pediatric patients with cyantic congenital heart disease. Biomed Res. 2013;24(1):77-81.

Habeeb NM, Al-Fahham MM, Tawfik AA, Mohammed MM. Nutritional assessment of children with congenital heart disease a comparative study in relation to type, operative intervention and complications. EC Pediatr. 2017;6(4):112-20.

Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K. Cardiac cachexia: Perspectives for prevention and treatment. Arq Bras Cardiol. 2017;108(1):74-80. https://doi.org/10.5935/ abc.20160142 PMid:27812676

Rachmawati CF, Sri S, Muhammad A. Assessment of quality of life in children with congenital heart disease of asianosis and cyanosis. Sari Pediatri. 2014;16(2):86-90. https://doi. org/10.14238/sp16.2.2014.86-90

Sjarif DR, Anggriawan SL, Putra ST, Djer MM. Anthropometric profiles of children with congenital heart disease. Med J Indones. 2011;20(1):40-5. https://doi.org/10.13181/mji.v20i1.426

Dündar BN, Saylam GS, Akçoral A, Atilla B. Chronic hypoxemia leads to reduced serum IGF-I levels in cyanotic congenital heart disease. J Pediatr Endocrinol Metab. 2000;13(4):431-6. https:// doi.org/10.1515/jpem.2000.13.4.431 PMid:10776998

Elwan SA, Assar EH, Essa EA, Elsaid DA. Assessment of serum insulin-like growth factor 1 and serum insulin in children with congenital heart disease. Benha Med J. 2015;32(1):36-40. https://doi.org/10.4103/1110-208x.170557

Rollins CK, Asaro LA, Akhondi-Asl A, Kussman BD, Rivkin MJ, Bellinger DC, et al. White matter volume predicts language development in congenital heart disease. J Pediatr. 2017;181:42- 8. https://doi.org/10.1016/j.jpeds.2016.09.070 PMid:27837950

Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015;131(15):1313-23. https://doi.org/10.1161/ circulationaha.114.013051 PMid:25762062

Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, et al. Brain maturation is delayed in infants with complex congenital. J Thoracic Cardiovasc Surg. 2009;137(3):529-37. https://doi.org/10.1016/j.jtcvs.2008.10.025 PMid:25762062

Varsha J, Buckley EM, Licht DJ, Lynch JM, Schwab PJ, Naim MY. Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics. J Cereb Blood Flow Metab. 2014;34(3):380-8. https://doi.org/10.1038/ jcbfm.2013.214 PMid:24326385

Claessens NH, Moeskops P, Buchmann A, Latal B, Knirsch W, Scheer I, et al. Delayed cortical gray matter development in neonates with severe congenital heart disease. Pediatr Res. 2016;80(5):668-74. https://doi.org/10.1038/pr.2016.145 PMid:27434120

Mebius MJ, Kooi EM, Bilardo CM, Bos AF. Brain injury and neurodevelopmental in congenital heart disease: A systematic review. Pediatrics. 2017;140(1):e20164055. https://doi. org/10.1542/peds.2016-4055 PMid:28607205

Pereira KD, Firpo C, Gasparin M, Teixeira AR, Dornelles S, Bacaltchuk T, et al. Evaluation of swallowing in infants with congenital heart defect. Int Arch Otorhinolaryngol. 2015;19(1):55-60. https://doi.org/10.1055/s-0034-1384687 PMid:25992152

Calarge C, Farmer C, DiSilvestro R, Eugene A. Serum ferritin and amphetamine response in youth with attention deficit/ hyperactivity disorder. J Child Adolesc Psychopharmacol. 2010;20(6):495-502. https://doi.org/10.1089/cap.2010.0053 PMid:21186968

Wehrens B, Schmitz S, Dordel S, Schickendantz S, Krumm C, Bott D, et al. Motor development in children with congenital cardiac diseases compared to their healthy peers. Cardiol Young. 2007;17(5):487-98. https://doi.org/10.1017/ s1047951107001023 PMid:17666153

Mari MA, Cascudo MM, Alchieri JC. Congenital heart disease and impacts on child development. Braz J Cardiovasc Surg. 2016;31(1):31-7. https://doi.org/10.5935/1678-9741.20160001 PMid:27074272

Downloads

Published

2020-08-20

How to Cite

1.
Maya S, Gunawijaya E, Yantie NPVK, Windiani IGAT. Growth, Development, and Quality of Life in Children with Congenital Heart Disease Children. Open Access Maced J Med Sci [Internet]. 2020 Aug. 20 [cited 2024 Nov. 21];8(B):613-8. Available from: https://oamjms.eu/index.php/mjms/article/view/4047