Effect of Dawood Fasting on the Increased Level of Antioxidant Enzymes

Authors

  • Utami Mulyaningrum Department of Clinical Pathology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Anif Firrizki Muttaqina Student of Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Adhitama Noor Idninda Student of Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Ndilalah Pulungan Student of Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Irena Agustiningtyas Department of Microbiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Ika Fidianingsih Department of Histology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.4175

Keywords:

Dawood fasting, intermittent fasting, Superoxide dismutase, Glutathione peroxidase, Catalase, Antioxidant, Intermittent fasting

Abstract

BACKGROUND: The incidence of degenerative diseases is increasing. The underlying mechanism for such disease includes rising oxidative stress without correspondingly adequate antioxidants. Intermittent fasting (IF) may stimulate mild oxidative stress with a corresponding increase in antioxidants. Dawood fasting (DF) as an alternative diet similar to IF is normally performed for <24 h (±14 h) with intermittent intervals of 1st-day fasting, 2nd-day ad libitum (AL) diet, 3rd-day fasting, and so on.

AIM: The aim of this study to examine the effect of DF on the changes in superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (Cat) antioxidant enzymes in BALB/c strain mice.

METHODS: A total of 15 BALB/c strain mice were randomly divided into three groups. The AL control (ALC) group was given a standard diet (AIN93) and AL drink every day. The high-fat diet control group was treated with a high-fat diet (24%) and daily AL drink. The DF group fasted on the 1st day (no food or drink) from 17:00 to 07:00, continued every other day, and given a standard feed (AIN93) and AL drink for 8 weeks. Examination of SOD levels in the liver as well as GPx and Cat levels in plasma was carried out using a spectrophotometer. The analysis was conducted using the one-way analysis of variance test followed by Tukey’s test (95% confidence level).

RESULTS: The levels of SOD in ALC, DF, and HF groups were 52.86 ± 5.73%, 68.57 ± 3.7%, and 38.57 ± 4.3%, respectively (p = 0.00). The GPx levels were 43.06 ± 2.75 U/L, 55.54 ± 2.71 U/L, and 32.26 ± 2.14 U/L, respectively (p = 0.00), and the corresponding Cat levels were 5.82 ± 0.63 U/ml, 6.55 ± 0.64 U/ml, and 3.44 ± 0.64 U/ml (p = 0.00).

CONCLUSION: The levels of SOD, GPx, and Cat antioxidant enzymes during DF were higher compared to an AL diet and a high-fat diet.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biography

Irena Agustiningtyas, Department of Microbiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia

Department of Microbiology

References

Mojahed LS, Saeb M, Mohammadi MM, Nazifi S. Long period starvation in rat: The effect of Aloe vera gel extract on oxidative stress status. Int Arch Med. 2016;9(252):1-9. https://doi.org/10.3823/2123

Sorensen M, Sanz A, Gómez J, Pamplona R, Portero-Otín M, Gredilla R, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006;40(4):339-47. https://doi.org/10.1080/10715760500250182 PMid:16517498

Marczuk-Krynicka D, Hryniewiecki T, Piatek J, Paluszak J. The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Med Sci Monit. 2003;9(3):BR131-5. http://www.ncbi.nlm.nih.gov/ pubmed/12640336 PMid:12640336

Feng G, Shi X, Huang X, Zhuang P. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis). Procedia Environ Sci. 2011;8:469-75. https://doi.org/10.1016/j.proenv.2011.10.074

Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive Species. Oxid Med Cell Longev. 2012;2012:1-12. https://doi.org/10.1155/2012/756132 PMid:22701757

Rahman T, Hosen I, Islam MM, Shekhar HU. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3(7):997-1019. https://doi.org/10.4236/abb.2012.327123

Huang C-J, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-related oxidative stress: The impact of physical activity and diet manipulation. Sport Med Open. 2015;1(1):32. https://doi.org/10.1186/s40798-015-0031-y PMid:26435910

World Health Organization. Global Status Report on Noncommunicable Diseases 2014; 2014. Available from: https:// www.who.int/nmh/publications/ncd-status-report-2014/en. apps.who.int/iris/bitstream/10665/148114/1/9789241564854_ eng.pdf?ua=1

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763 PMid:28819546

Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583-606. https://doi.org/10.1089/ars.2011.3999 PMid:21473702

Lahdimawan A, Handono K, Indra MR, Prawiro SR. Effect of Ramadan fasting on classically activated, oxidative stress and inflammation of macrophage. IOSR J Pharm. 2013;3(4):14-22. https://doi.org/10.9790/3013-034101422

Lahdimawan A, Handono K, Indra MR, Prawiro SR. Effect of ramadan fasting on the ability of serum, PBMC and macrophages from healthy subjects to kill M tuberculosis. IOSR J Pharm Biol Sci 2014;9(1):24-9. https://doi.org/10.9790/3008-09132429

de Azevedo FR, Ikeoka D, Caramelli B. Effects of intermittent fasting on metabolism in men. Rev Assoc Med Bras. 2013;59(2):167-73. https://doi.org/10.1016/s2255-4823(13)70451-x PMid:23582559

Ibrahim WH, Habib HM, Jarrar AH, Al Baz SA. Effect of ramadan fasting on markers of oxidative stress and serum biochemical markers of cellular damage in healthy subjects. Ann Nutr Metab. 2008;53(3-4):175-81. https://doi.org/10.1159/000172979 PMid:19011280

Delpazir S, Norouzy A, Mazidi M, Rezaie P, Moshiri M, Etemad L, et al. Effects of ramadan fasting on oxidative stress and prooxidant-antioxidant balance. J Fasting Health. 2015;3(2):55-7. https://doi.org/10.22038/jfh.2015.4580

Maideen NM, Jumale Aََََ, Balasubramaniam R. Adverse health effects associated with Islamic fasting-a literature review. J Fasting Health. 2017;5(3):113-8. https://doi.org/10.22038/jfh.2017.25419.1095

Adawi M, Watad A, Brown S, Aazza K, Aazza H, Zouhir M, et al. Ramadan fasting exerts immunomodulatory effects: Insights from a systematic review. Front Immunol. 2017;8:1144. https://doi.org/10.3389/fimmu.2017.01144 PMid:29230208

Ahmed A, Saeed F, Arshad MU, Afzaal M, Imran A, Ali SW, et al. Impact of intermittent fasting on human health: An extended review of metabolic cascades. Int J Food Prop. 2018;21(1):2700- 13. https://doi.org/10.1080/10942912.2018.1560312

Fidianingsih I, Andriani RN, Addina M, Jamil NA. Daud fasting effects on haematological, renal and lipid profile in post menopausal women. Pak J Med Health Sci. 2017;11(4):1-5.

Fidianingsih I, Jamil NA, Andriani RN, Rindra WM. Decreased anxiety after Dawood fasting in the pre-elderly and elderly. J Complement Integr Med. 2019;16(1):1-9. https://doi.org/10.1515/jcim-2017-0172 PMid:30312161

Nurmasitoh T, Utami SY, Kusumawardani E, Najmuddin AA, Fidianingsih I. Intermittent fasting decreases oxidative stress parameters in Wistar rats (Rattus norvegicus). Univ Med. 2018;37(1):31. https://doi.org/10.18051/univmed.2018. v37.31-38

Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121. https://doi.org/10.4103/0253-7176.116232 PMid:24049221

Reeves PG, Nielsen FH, Fahey GC. AIN-93 Purified diets for laboratory rodents: Final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51. https://doi.org/10.1093/jn/123.11.1939 PMid:8229312

Tikoo K, Tripathi DN, Kabra DG, Sharma V, Gaikwad AB. Intermittent fasting prevents the progression of Type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett. 2007;581(5):1071-8. https://doi.org/10.1016/j. febslet.2007.02.006 PMid:17316625

Hu Y, Yang Y, Zhang M, Deng M, Zhang JJ. Intermittent fasting pretreatment prevents cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Nutr. 2017;147(7):1437-45. https://doi.org/10.3945/jn.116.245613 PMid:28515159

Descamps O, Riondel J, Ducros V, Roussel AM. Mitochondrial production of reactive oxygen species and incidence of ageassociated lymphoma in OF1 mice: Effect of alternate-day fasting. Mech Ageing Dev. 2005;126(11):1185-91. https://doi.org/10.1016/j.mad.2005.06.007 PMid:16126250

Gomi F, Matsuo M. Effects of aging and food restriction on the antioxidant enzyme activity of rat livers. J Gerontol A Biol Sci Med Sci. 1998;53(3):B161-7. https://doi.org/10.1093/gerona/53a.3.b161 PMid:9597038

Yuan W. The Effect of Alternate Day Fasting to Serum and Liver SOD, GSH-Px Activity and MDA Content in NAFLD Rats. China: Hebei Medical University; 2014.

Jannah M, Nasihun T, Sumarawati T. The effect of fasting on the concentration of enzimatic antioxidants (superoxide dismutase and glutathione peroxidase) in rats. Sains Med J Kedokt Kesehat. 2016;7(1):15-20.

Mattson MP. Challenging oneself intermittently to improve health. Dose Response. 2014;12(4):600-18. https://doi. org/10.2203/dose-response.14-028.mattson PMid:25552960

Hine CM, Mitchell JR. NRF2 and the Phase II response in acute stress resistance induced by dietary restriction. J Clin Exp Pathol. 2012;S4(4):7329. https://doi.org/10.4172/2161-0681. s4-004 PMid:23505614

Chausse B, Vieira-Lara MA, Sanchez AB, Medeiros MH, Kowaltowski AJ. Intermittent fasting results in tissuespecific changes in bioenergetics and redox state. PLoS One. 2015;10(3):e0120413. https://doi.org/10.1371/journal.pone.0120413 PMid:25749501

Calabrese EJ, Mattson MP. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis. 2017;3(1):1-8. https://doi.org/10.1038/s41514-017-0013-z PMid:28944077

Cerqueira FM, da Cunha FM, Caldeira da Silva CC, Romano RL, Garcia CC, Colepicolo P, et al. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med. 2011;51(7):1454-60. https://doi.org/10.1016/j. freeradbiomed.2011.07.006 PMid:21816219

Varju M, Müller T, Bokor Z, Żarskia D, Mézes M, Balogh K. The effects of excessive starvation on antioxidant defence and lipid peroxidation in intensively reared, commercial-size pikeperch (Sander lucioperca L.). Egypt J Aquat Res. 2018;44(4):349-52. https://doi.org/10.1016/j.ejar.2018.11.003

Schull Q, Viblanc VA, Stier A, Saadaoui H, Lefol E, Criscuolo F, et al. The oxidative debt of fasting: Evidence for short- to medium-term costs of advanced fasting in adult king penguins. J Exp Biol. 2016;219(20):3284-93. https://doi.org/10.1242/jeb.145250 PMid:27520655

Mojto V, Gvozdjakova A, Kucharska J, Rausova Z, Vancova O, Valuch J. Effects of complete water fasting and regeneration diet on kidney function, oxidative stress and antioxidants. Bratislava Med J. 2018;119(2):107-11. https://doi.org/10.4149/bll_2018_020 PMid:29455546

Wresdiyati T, Astawan M, Fithriani D, Adnyane IKM, Novelina S, and Aryani S. The effect α-tocopherol on the profiles of superoxide dismutase and malondialdehyde in the liver of rats under stress condition. J Vet Pathophysiol. 2010;2:177-82.

Sadek K, Saleh E. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats. Hum Exp Toxicol. 2014;33(12):1277-83. https://doi.org/10.1177/0960327114527629 PMid:24651824

Jodayree S, Patterson ZR, McKay H, Tsopmo A. Blood and liver antioxidant capacity of mice fed high fat diet supplemented with digested oat bran proteins. Int J Food Sci Nutr Eng. 2014;4(1):9- 14. https://doi.org/10.5923/j.food.20140401.02

Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica. 2016;2016:5029414. https://doi.org/10.1155/2016/5029414 PMid:27019761

Downloads

Published

2021-01-05

How to Cite

1.
Mulyaningrum U, Muttaqina AF, Idninda AN, Pulungan N, Agustiningtyas I, Fidianingsih I. Effect of Dawood Fasting on the Increased Level of Antioxidant Enzymes. Open Access Maced J Med Sci [Internet]. 2021 Jan. 5 [cited 2024 Nov. 21];9(A):1-6. Available from: https://oamjms.eu/index.php/mjms/article/view/4175

Similar Articles

You may also start an advanced similarity search for this article.