Evaluation of the Biocompatibility of a Recent Bioceramic Root Canal Sealer (BioRoot™ RCS): In-vivo Study

Authors

  • Laila Hussein El-Mansy Department of Endodontic, Faculty of Dentistry, Beni-Suef University, Egypt
  • Magdy Mohamed Ali Department of Endodontic, Faculty of Dentistry, Beni-Suef University, Egypt
  • Reham EL Sayed Hassan Department of Endodontic, Faculty of Dentistry, Minia University, Egypt

DOI:

https://doi.org/10.3889/oamjms.2020.4361

Keywords:

BioRoot RCS, Biocompatibility, Rat subcutaneous implantation, Root canal sealer, Bioceramic sealer, MTA Fillapex

Abstract

BACKGROUND: Recently, new calcium silicate bioceramic sealers were introduced to the market. The selection of root canal sealers should not only be based on the different physical parameters but also on local biocompatibility and tissue tolerance.

AIM: This study aimed to evaluate and compare the in-vivo biocompatibility of a BioRoot RCS in parallel to MTA Fillapex and AH Plus sealers.

METHODS: Polyethylene tubes containing the freshly mixed test materials were implanted in the subcutaneous tissue of 32 Wistar rats. Empty tubes served as negative controls. After 7, 14, 30, and 60 days, the animals were sacrificed, and the implants with surrounding tissues were processed for routine histological analysis. Histological sections were analyzed under light microscopy. The tissue response was determined by the inflammatory cell infiltration intensity and the fibrous capsule thickness.

RESULTS: Results revealed a statistically significant decrease of the inflammation intensity by time within each group for all tested sealers and control. A well-defined thin capsule was observed for all tested sealers at 60 days.

CONCLUSION: BioRoot RCS exhibited rapid recovery of inflammation similar to controls. Thus, within the limitations of this study, it can be considered a biocompatible sealer with acceptable tissue tolerance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Nasseh A. The rise of bioceramics. Endod Prac. 2009;2:17-22.

Jain PR, Ranjan MA. The rise of biocramics in endodontics: A review. Int J Pharm Bio Sci. 2015;6(1):416-22.

Parirokh M, Torabinejad M, Dummer PM. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-Part I: Vital pulp therapy. Int Endod J 2018;51(2):177- 205. https://doi.org/10.1111/iej.12841 PMid:28836288

Bratel J, Jontell M, Dahlgren U, Bergenholtz G. Effects of root canal sealers on immunocompetent cells in vitro and in vivo. Int Endod J. 1998;31(3):178-88. https://doi. org/10.1046/j.1365-2591.1998.00148.x PMid:10321164

Bernath M, Szabo J. Tissue reaction initiated by different sealers. Int Endod J. 2003;36(4):256-61. https://doi. org/10.1046/j.1365-2591.2003.00662.x PMid:12702119

Bueno CR, Valentim D, Marques VA, Gomes-Filho JE, Cintra LT, Jacinto RC, et al. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Braz Oral Res. 2016;30(1):81-9. https://doi. org/10.1590/1807-3107bor-2016.vol30.0081 PMid:27305513

Cintra LT, Benetti F, de Azevedo Queiroz ÍO, de Araújo Lopes JM, de Oliveira SH, Araújo GS, et al. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod. 2017;43(5):774-8. https://doi.org/10.1016/j. joen.2016.12.018 PMid:28320539

Al-Haddad A, Ab Aziz C, Zeti A. Bioceramic-based root canal sealers: A review. Int J Biomater. 2016;2016:9753210. https:// doi.org/10.1155/2016/9753210 PMid:27242904

Santos JM, Pereira S, Sequeira DB, Messias AL, Martins JB, Cunha H, et al. Biocompatibility of a bioceramic silicone-based sealer in subcutaneous tissue. J Oral Sci. 2019;61(1):171-7. https://doi.org/10.2334/josnusd.18-0145 PMid:30918214

Ricucci D, Langeland K. Apical limit of root canal instrumentation and obturation, Part 2. A histological study. Int Endod J. 1998;31(6):394-409. https://doi. org/10.1046/j.1365-2591.1998.00183.x PMid:15551607

Grossman L, Oliet S, del Rio C. Endodontic Practice. Vol. 11. Philadelphia, PA, USA: Auflage, Lea & Febiger; 1988. p. 234-41.

Septodont. BioRoot RCS; 2019. Available from: https://www. oraverse.com/bio/img/bioroot-scientificfile.pdf. [Last accessed on 2019Aug 26].

Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(2):e120-36. https://doi.org/10.1111/iej.12856 PMid:28881478

Vouzara T, Dimosiari G, Koulaouzidou EA, Economides N. Cytotoxicity of a new calcium silicate endodontic sealer. J Endod. 2018;44(5):849-52. https://doi.org/10.1016/j.joen.2018.01.015 PMid:29550005

Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent. 2017;9(4):e574-8. https://doi.org/10.4317/ jced.53724 PMid:28469826

Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, et al. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells. Dent Mater. 2015;31(11):1290- 7. https://doi.org/10.1016/j.dental.2015.08.163 PMid:26364144

Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, et al. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J. 2017;50(9):875-84. https://doi.org/10.1111/ iej.12703 PMid:27666949

Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): Interactions with human periodontal ligament cells in vitro. J Endod. 2015;41(9):1469-73. https://doi.org/10.1016/j. joen.2015.04.011 PMid:26001857

Eldeniz AU, Shehata M, Högg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J. 2016;49(12):1141-51. https://doi.org/10.1111/ iej.12577 PMid:26574345

Benetti F, de Azevedo Queiroz ÍO, Oliveira PH, Conti LC, Azuma MM, Oliveira SH, et al. Cytotoxicity and biocompatibility of a new bioceramic endodontic sealer containing calcium hydroxide. Braz Oral Res. 2019;33:e042. https://doi. org/10.1590/1807-3107bor-2019.vol33.0042 PMid:31508725

Zhang W, Peng B. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J. 2015;34(6):774-80. https://doi.org/10.4012/ dmj.2014-271 PMid:26632225

Simsek N, Akinci L, Gecor O, Alan H, Ahmetoglu F, Taslidere E. Biocompatibility of a new epoxy resin-based root canal sealer in subcutaneous tissue of rat. Eur J Dent. 2015;9(1):31-5. https:// doi.org/10.4103/1305-7456.149635 PMid:25713481

Cosme-Silva L, Gomes-Filho JE, Benetti F, Dal- Fabbro R, Sakai VT, Cintra LT, et al. Biocompatibility and immunohistochemical evaluation of a new calcium silicate-based cement, Bio-C pulpo. Int Endod J. 2019;52(5):689-700. https://doi.org/10.1111/iej.13052 PMid:30515845

Zmener O, Pameijer CH, Kokubu GA, Grana DR. Subcutaneous connective tissue reaction to methacrylate resin-based and zinc oxide and eugenol sealers. J Endod. 2010;36(9):1574-9. https:// doi.org/10.1016/j.joen.2010.06.019 PMid:20728730

Talabani RM, Garib BT, Masaeli R. Biocompatibility of three calcium silicate based materials implanted in rat subcutaneous tissue. Biomed Res. 2019;30(4):591-9. https://doi.org/10.35841/ biomedicalresearch.30-19-264

Browne RM. Animal tests for biocompatibility of dental materials-relevance, advantages and limitations. J Dent. 1994;22:S21-4. https://doi.org/10.1016/0300-5712(94)90035-3 PMid:7844271

Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577-9. https://doi. org/10.1111/j.1476-5381.2010.00872.x PMid:20649561

Cintra LT, Benetti F, de Azevedo Queiroz ÍO, Ferreira LL, Massunari L, Bueno CR, et al. Evaluation of the cytotoxicity and biocompatibility of new resin epoxy-based endodontic sealer containing calcium hydroxide. J Endod. 2017;43(12):2088-92. https://doi.org/10.1016/j.joen.2017.07.016 PMid:29032822

Benetti F, Queiroz ÍO, Cosme-Silva L, Conti LC, Oliveira SH, Cintra LT. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30(4):325-32. https://doi.org/10.1590/0103-6440201902457

Bueno CR, Vasques AM, Cury MT, Sivieri-Araújo G, Jacinto RC, Gomes-Filho JE, et al. Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clin Oral Investig. 2019;23(1):169-77. https://doi.org/10.1007/s00784-018-2423-0 PMid:29572687

Karanth P, Manjunath MK, Kuriakose ES. Reaction of rat subcutaneous tissue to mineral trioxide aggregate and Portland cement: A secondary level biocompatibility test. J Indian Soc Pedod Prev Dent. 2013;31(2):74-81. https://doi. org/10.4103/0970-4388.115698

Parirokh M, Mirsoltani B, Raoof M, Tabrizchi H, Haghdoost AA. Comparative study of subcutaneous tissue responses to a novel root-end filling material and white and grey mineral trioxide aggregate. Int Endod J. 2011;44(4):283-9. https://doi. org/10.1111/j.1365-2591.2010.01808.x PMid:21091493

Mori GG, Teixeira LM, de Oliveira DL, Jacomini LM, da Silva SR. Biocompatibility evaluation of biodentine in subcutaneous tissue of rats. J Endod. 2014;40(9):1485-8. https://doi.org/10.1016/j. joen.2014.02.027 PMid:25146039

Murray PE, Godoy CG, Godoy FG. How is the biocompatibilty of dental biomaterials evaluated? Med Oral Patol Oral Cir Bucal. 2007;12(3):258-66. PMid:17468726

International Organization for Standardization. Biological Evaluation of Medical Devices. Part 6: Tests for Local Effects after Implantation. Geneva, Switzerland: International Organization for Standardization; 2016.

Derakhshan S, Adl A, Parirokh M, MashadiAbbas F, Haghdoost AA. Comparing subcutaneous tissue responses to freshly mixed and set root canal sealers. Iran Endod J. 2009;4(4):152-7. PMid:24019838

Silva LA, Azevedo LU, Consolaro A, Barnett F, Xu Y, Battaglino RA, et al. Novel endodontic sealers induce cell cytotoxicity and apoptosis in a dose-dependent behavior and favorable response in mice subcutaneous tissue. Clin Oral Investig. 2017;21(9):2851-61. https://doi.org/10.1007/ s00784-017-2087-1 PMid:28281012

Pinheiro LS, Iglesias JE, Boijink D, Mestieri LB, Kopper PM, de Poli Figueiredo JA, et al. Cell viability and tissue reaction of NeoMTA plus: An in vitro and in vivo study. J Endod. 2018;44(7):1140-5. https://doi.org/10.1016/j.joen.2018.03.007 PMid:29866406

Zaki DY, Zaazou MH, Khallaf ME, Hamdy TM. In vivo comparative evaluation of periapical healing in response to a calcium silicate and calcium hydroxide based endodontic sealers. Open Access Maced J Med Sci. 2018;6(8):1475-9. https://doi.org/10.3889/ oamjms.2018.293 PMid:30159080

Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endod. 2014;40(10):1632-7. https://doi.org/10.1016/j.joen.2014.03.025 PMid:25260736

Shahi S, Rahimi S, Lotfi M, Yavari H, Gaderian A. A comparative study of the biocompatibility of three root-end filling materials in rat connective tissue. J Endod. 2006;32(8):776-80. https://doi. org/10.1016/j.joen.2006.01.014 PMid:16861081

Silveira CM, Pinto SC, Zedebski RD, Santos FA, Pilatti GL. Biocompatibility of four root canal sealers: A histopathological evaluation in rat subcutaneous connective tissue. Braz Dent J. 2011;22(1):21-7. https://doi.org/10.1590/ s0103-64402011000100003 PMid:21519643

Khalil I, Naaman A, Camilleri J. Properties of tricalcium silicate sealers. J Endod. 2016;42(10):1529-35. https://doi. org/10.1016/j.joen.2016.06.002 PMid:27523906

Slompo C, Peres-Buzalaf C, Gasque KC, Damante CA, Ordinola-Zapata R, Duarte MA, et al. Experimental calcium silicate-based cement with and without zirconium oxide modulates fibroblasts viability. Braz Dent J. 2015;26(6):587-91. https://doi.org/10.1590/0103-6440201300316 PMid:26963200

Simsek N, Alan H, Ahmetoglu F, Taslidere E, Bulut ET, Keles A. Assessment of the biocompatibility of mineral trioxide aggregate, bioaggregate, and biodentine in the subcutaneous tissue of rats. Niger J Clin Pract. 2015;18(6):739-43. https://doi. org/10.4103/1119-3077.154219 PMid:26289510

Chakar S, Changotade S, Osta N, Khalil I. Cytotoxic evaluation of a new ceramic-based root canal sealer on human fibroblasts. Eur J Dent. 2017;11(02):141-8. https://doi.org/10.4103/ejd.ejd_2_17 PMid:28729783

Bjerre L, Bünger CE, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29(17):2616- 27. https://doi.org/10.1016/j.biomaterials.2008.03.003 PMid:18374976

Downloads

Published

2020-04-15

How to Cite

1.
El-Mansy LH, Ali MM, Hassan RES. Evaluation of the Biocompatibility of a Recent Bioceramic Root Canal Sealer (BioRoot™ RCS): In-vivo Study. Open Access Maced J Med Sci [Internet]. 2020 Apr. 15 [cited 2024 Apr. 18];8(D):100-6. Available from: https://oamjms.eu/index.php/mjms/article/view/4361

Issue

Section

Dental Pathology and Endodontics

Categories