Atomic Force Microscope Surface Roughness Analysis of Surface Treated Ceramics
DOI:
https://doi.org/10.3889/oamjms.2020.4523Keywords:
E-max, Suprinity ceramic, Hydrofluoric acid, Aluminum oxide, Tribochemical, Surface treatment, Atomic force microscopeAbstract
AIM: The purpose of this study was to evaluate the surface roughness of two types of ceramic after different surface treatments using an atomic force microscope (AFM).
MATERIALS AND METHODS: One hundred sixty disks were fabricated of the two types of ceramic eighty disks of lithium disilicate (LD) (IPS e. max computer-aided design [CAD]) and eighty disks of hybrid ceramic (VITA Suprinity pc). Disks were subdivided into four groups according to the surface treatment (n = 20). Eighty disks of (IPS e. max CAD) were subdivided into LD I: control (no treatment), LD II: Sandblasting (Al2O3, 50 μm particle size), LD III: Hydrofluoric acid etching, and LD IV: Tribochemical surface treatment. Eighty disks of (VITA Suprinity pc) were subdivided into HD I: control (no treatment), HD II: Sandblasting (Al2O3, 50 μm particle size), HD III: Hydrofluoric acid etching, and HD IV: Tribochemical surface treatment. Then, surface treated disks surface roughness was analyzed by AFM (ThermoMicroscope, Bruker, Santa Barbara, CA, USA). The results were analyzed using SPSS program software version 25. Statistical analysis was done by one-way ANOVA and Tukey’s post hoc test with significance level 0.05.
RESULTS: Tribochemical surface treatment groups of both types of ceramic L.D IV (279 ± 147 nm) and H.D IV (269.8 ± 142.2 nm) had the highest mean Ra values followed by surface abrasion with Al2O3 50 μ; L.D II (265.5 ± 140 nm), H.D II (204.5 ± 107.7 nm), hydrofluoric acid etching then control groups.
CONCLUSION: Different surface treatments increased surface roughness significantly for both types of ceramic.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Özcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J. 2008;27(1):99-104. https://doi.org/10.4012/ dmj.27.99 PMid:18309618
Sato TP, Anami LC, Melo RM, Valandro LF, Bottino MA. Effects of surface treatments on the bond strength between resin cement and a new zirconia-reinforced lithium silicate ceramic. Oper Dent. 2016;41(2):284-92. https://doi.org/10.2341/14-357-l PMid:26652019
Özdemir H, Aladağ Lİ. Effect of different surface treatments on bond strength of different resin cements to lithium disilicate glass ceramic: An in vitro study. Biotechnol Biotechnol Equip. 2017;31(4):815-20. https://doi.org/10.1080/13102818.2017.133 4589
Borges GA, Sophr AM, De Goes MF, Sobrinho LC, Chan DC. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent. 2003;89(5):479- 88. https://doi.org/10.1016/s0022-3913(02)52704-9 PMid:12806326
Plueddemann EP. Adhesion through silane coupling agents. J Adhes. 1970;2(3):184-201.
Wood DJ, Bubb NL, Millar BJ, Dunne SM. Preliminary investigation of a novel retentive system for hydrofluoric acid etch-resistant dental ceramics. J Prosthet Dent. 1997;78(3):275- 80. https://doi.org/10.1016/s0022-3913(97)70026-x
De Freitas AC, Espejo LC, Botta SB, De Sa Teixeira F, Luz MA, Garone-Netto N, et al. AFM analysis of bleaching effects on dental enamel microtopography. Appl Surf Sci. 2010;256(9):2915-9. https://doi.org/10.1016/j.apsusc.2009.11.050
Dilber E, Yavuz T, Kara HB, Ozturk AN. Comparison of the effects of surface treatments on roughness of two ceramic systems. Photomed Laser Surg. 2012;30(6):308-14. https://doi. org/10.1089/pho.2011.3153 PMid:22506513
Sanches RP, Otani C, Damião AJ, Miyakawa W. AFM characterization of bovine enamel and dentine after acid-etching. Micron. 2009;40(4):502-6. https://doi.org/10.1016/j. micron.2008.12.001
De Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater. 2009;25(2):172-9. https://doi.org/10.1016/j. dental.2008.05.012 PMid:18620746
Osorio E, Toledano M, Da Silveira BL, Osorio R. Effect of different surface treatments on In-Ceram Alumina roughness. An AFM study. J Dent. 2010;38(2):118-22. https://doi.org/10.1016/j. jdent.2009.09.010
Sorensen JA, Engelman MJ, Torres TJ, Avera SP. Shear bond strength of composite resin to porcelain. Int J Prosthodont. 1991;4(1):17-23. PMid:2012666
Sharma S, Cross SE, Hsueh C, Wali RP, Stieg AZ, Gimzewski JK. Nanocharacterization in dentistry. Int J Mol Sci. 2010;11(6):2523-45. https://doi.org/10.3390/ijms11062523 PMid:20640166
Cassinelli C, Morra M. Atomic force microscopy studies of the interaction of a dentin adhesive with tooth hard tissue. J Biomed Mat Res. 1994;28(12):1427-31. https://doi.org/10.1002/ jbm.820281207
Rokaya D, Srimaneepong V, Qin J, Thunyakitpisal P, Siraleartmukul K. Surface adhesion properties and cytotoxicity of graphene oxide coatings and graphene oxide/silver nanocomposite coatings on biomedical NiTi alloy. Sci Adv Mat. 2019;11(10):1474-87. https://doi.org/10.1166/sam.2019.3536
Yang H. Atomic Force Microscopy (AFM): Principles, Modes of Operation and Limitations. New York: Nova Science Publishers; 2014.
Smith DP. Limits of force microscopy. Rev Sci Instrum. 1995;66(5):3191-5.
Kara HB, Dilber E, Koc O, Ozturk AN, Bulbul M. Effect of different surface treatments on roughness of IPS Empress 2 ceramic. Lasers Med Sci. 2012;27(2):267-72. https://doi.org/10.1007/ s10103-010-0860-3 PMid:21110057
Söderholm KJ, Shang SW. Molecular orientation of silane at the surface of colloidal silica. J Dent Res. 1993;72:1050-4. https:// doi.org/10.1177/00220345930720061001 PMid:8388415
Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: A review of the literature. J Prosthet Dent. 2003;89(3):268-74. PMid:12644802
Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: Volume loss, morphology, and changes in the surface composition. J Prosthet Dent. 1994;71(5):453-61. https://doi.org/10.1016/0022-3913(94)90182-1 PMid:8006839
Heikkinen TT, Lassila LV, Matinlinna JP, Vallittu PK. Effect of operating air pressure on tribochemical silica-coating. Acta Odontol Scand. 2007;65(4):241-8. https://doi. org/10.1080/00016350701459753 PMid:17762988
Ersu B, Yuzugullu B, Yazici AR, Canay S. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent. 2009;37(11):848-56. https://doi.org/10.1016/j.jdent.2009.06.017 PMid:19616883
Baratto SS, Spina DR, Gonzaga CC, Cunha LF, Furuse AY, Filho FB, et al. Silanated surface treatment: Effects on the bond strength to lithium disilicate glass-ceramic. Braz Dent J. 2015;26(5):474-7. https://doi. org/10.1590/0103-6440201300354 PMid:26647931
Kamada K, Yoshida K, Atsuta M. Effect of ceramic surface treatments on the bond of four resin luting agents to a ceramic material. J Prosthet Dent. 1998;79(5):508-13. https://doi. org/10.1016/s0022-3913(98)70170-2 PMid:9597602
Szep S, Gerhardt T, Gockel HW, Ruppel M, Metzeltin D, Heidemann D. In vitro dentinal surface reaction of 9.5% buffered hydrofluoric acid in repair of ceramic restorations: A scanning electron microscopic investigation. J Prosthet Dent. 2000;83(6):668-74. https://doi.org/10.1016/ s0022-3913(00)70069-2 PMid:10842137
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Amna Salem, Cherif Mohsen (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0