Basic Properties of Anthocyanin for Pain Management
DOI:
https://doi.org/10.3889/oamjms.2020.4539Keywords:
anthocyanin, inflammation, oxidative stress, nociceptive neuropathic, pain management, treatmentAbstract
Inflammation and oxidative stress is both two important key players in the development, enhancement, and maintenance of both nociceptive and neuropathic pain. They are almost invariably involved in pain-related diseases, such as all-cause low back pain, diabetic neuropathy, neurodegenerative diseases, myocardial ischemia, cancer, and various autoimmune disorders, among others. They act synergistically and their presence can be beneficial, yet detrimental to neurons and nerves if they are in overdrive state. Meanwhile, anthocyanin, a group of flavonoid polyphenols, is very common in nature and can be easily derived from fruits and vegetables. Accumulating evidence has shown that anthocyanin possesses potent anti-inflammatory and anti-oxidant effects through numerous mechanisms and that its proof-of-concept in ameliorating various pathology of disease states have been extensively documented. Unfortunately, however, the empirical evidence of anthocyanin for alleviating pain has been very minimal to date, despite its potentials. Herein, we discuss the basic properties of anthocyanin and its relevant pain mechanisms which could become potential targets for pain management using this natural compound.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Harden N, Cohen M. Unmet needs in the management of neuropathic pain. J Pain nd Symptom Manage. 2003;25(5):S12-7. https://doi.org/10.1016/s0885-3924(03)00065-4 PMid:12694988
Volkow ND, McLellan AT. Opioid abuse in chronic pain misconceptions and mitigation strategies. N Engl J Med. 2016;374(13):1253-63. https://doi.org/10.1056/nejmra1507771 PMid:27028915
Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH. The prevalence of chronic pain in United States adults: results of an Internet-based survey. J Pain. 2010;11(11):1230-9. https://doi.org/10.1016/j.jpain.2010.07.002 PMid:20797916
Ohnishi R, Ito H, Kasajima N, Kaneda M, Kariyama R, Kumon H, et al. Urinary excretion of anthocyanins in humans after cranberry juice ingestion. Biosci Biotechnol Biochem. 2006;70(7):1681-7. https://doi.org/10.1271/bbb.60023 PMid:16861803
Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation. 2013;127(2):188-96. https://doi.org/10.1161/ circulationaha.112.122408 PMid:23319811
Li S, Wu B, Fu W, Reddivari L. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int J Mol Sci. 2019;20(10):2588. https://doi.org/10.3390/ijms20102588 PMid:31137777
Tall J, Seeram N, Zhao C, Nair M, Meyer R, Raja S. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res. 2004;153(1):181-8. https://doi.org/10.1016/j.bbr.2003.11.011 PMid:15219719
Putta S, Yarla NS, Kumar KE, Lakkappa DB, Kamal MA, Scotti L, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem. 2018;25(39):5347-71. https://doi.org/10.2174/09298673256661 71206101945 PMid:29210634
Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: A review. Compr Rev Food Sci Food Saf. 2013;12(5):483-508. https://doi.org/10.1111/1541-4337.12024
Miguel MG. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J Appl Pharm Sci. 2011;1(6):7-15.
Prior RL, Wu X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res. 2006;40(10):1014-28. https://doi.org/10.1080/10715760600758522 PMid:17015246
Cheng J, Wei G, Zhou H, Gu C, Vimolmangkang S, Liao L, et al. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol. 2014;166(2):1044-58. https://doi.org/10.1104/pp.114.246876 PMid:25106821
Wahyuningsih S, Wulandari L, Wartono MW, Munawaroh H, Ramelan AH. The effect of pH and color stability of anthocyanin on food colorant. IOP Conf Ser Mater Sci Eng. 2017;193(1):12047. https://doi.org/10.1088/1757-899x/193/1/012047
Horbowicz M, Kosson R, Grzesiuk A, Dębski H. Anthocyanins of fruits and vegetables their occurrence, analysis and role in human nutrition. Veg Crops Res Bull 2008;68:5-22. https://doi.org/10.2478/v10032-008-0001-8
Lapidot T, Harel S, Akiri B, Granit R, Kanner J. PH-dependent forms of red wine anthocyanins as antioxidants. J Agric Food Chem. 1999;47(1):67-70. https://doi.org/10.1021/jf980704g PMid:10563851
Bowen-Forbes CS, Zhang Y, Nair MG. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal. 2010;23(6):554-60. https://doi.org/10.1016/j.jfca.2009.08.012
Bridle P, Timberlake CF. Anthocyanins as natural food colours selected aspects. Food Chem. 1997;58(1):103-9. https://doi.org/10.1016/s0308-8146(96)00222-1
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290-302. https://doi.org/10.1021/jf0502698 PMid:15884874
Ogawa K, Sakakibara H, Iwata R, Ishii T, Sato T, Goda T, et al. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J Agric Food Chem. 2008;56(12):4457-62. https://doi.org/10.1021/jf800406v PMid:18522397
Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. https://doi.org/10.1093/database/bap024 PMid:20428313
Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. The stomach as a site for anthocyanins absorption from food. FEBS Lett. 2003;544(1-3):210-3. https://doi.org/10.1016/ s0014-5793(03)00504-0 PMid:12782318
Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, et al. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem. 2005;53(10):3902-8. https://doi.org/10.1021/jf050145v PMid:15884815
Tsuda T, Horio F, Osawa T. Absorption and metabolism of cyanidin 3-O-beta-D-glucoside in rats. FEBS Lett. 1999;449(2-3):179-82. https://doi.org/10.1016/s0014-5793(99)00407-x PMid:10338127
Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem. 2001;49(3):1546-51. https://doi.org/10.1021/jf001246q PMid:11312894
He J, Magnuson BA, Giusti MM. Analysis of anthocyanins in rat intestinal contents--impact of anthocyanin chemical structure on fecal excretion. J Agric Food Chem. 2005;53(8):2859-66. https://doi.org/10.1021/jf0479923 PMid:15826031
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001-43. https://doi.org/10.1039/b802662a PMid:19636448
Del Bo C, Ciappellano S, Klimis-Zacas D, Martini D, Gardana C, Riso P, et al. Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the SpragueDawley rat. J Agric Food Chem. 2010;58(4):2491-7. https://doi.org/10.1021/jf903472x PMid:20030330
Kay CD, Mazza GJ, Holub BJ. Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr. 2005;135(11):2582-8. https://doi.org/10.1093/jn/135.11.2582 PMid:16251615
Mullen W, Edwards CA, Serafini M, Crozier A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agric Food Chem. 2008;56(3):713-9. https://doi.org/10.1021/ jf072000p PMid:18211024
Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009;20(7):521-9. https://doi.org/10.1016/j. jnutbio.2008.05.011 PMid:18789665
Wu X, Pittman HE 3rd, Prior RL. Pelargonidin is absorbed and metabolized differently than cyanidin after marionberry consumption in pigs. J Nutr. 2004;134(10):2603-10. https://doi.org/10.1093/jn/134.10.2603 PMid:15465754
Tian Q, Giusti MM, Stoner GD, Schwartz SJ. Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. J Agric Food Chem. 2006;54(4):1467-72. https:// doi.org/10.1021/jf052367z PMid:16478275
Wu X, Pittman HE 3rd, McKay S, Prior RL. Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J Nutr. 2005;135(10):2417-24. https://doi.org/10.1093/jn/135.10.2417 PMid:16177206
Fang J. Bioavailability of anthocyanins. Drug Metab Rev. 2014;46(4):508-20. PMid:25347327
Kurilich AC, Clevidence BA, Britz SJ, Simon PW, Novotny JA. Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem. 2005;53(16):6537-42. https://doi.org/10.1021/jf050570o PMid:16076146
Borges G, Roowi S, Rouanet JM, Duthie GG, Lean ME, Crozier A. The bioavailability of raspberry anthocyanins and ellagitannins in rats. Mol Nutr Food Res. 2007;51(6):714-25. https://doi.org/10.1002/mnfr.200700024 PMid:17533654
Felgines C, Texier O, Besson C, Fraisse D, Lamaison JL, Remesy C. Blackberry anthocyanins are slightly bioavailable in rats. J Nutr. 2002;132(6):1249-53. https://doi.org/10.1093/ jn/132.6.1249 PMid:12042441
Felgines C, Talavera S, Gonthier MP, Texier O, Scalbert A, Lamaison JL, et al. Strawberry anthocyanins are recovered in urine as glucuro and sulfoconjugates in humans. J Nutr. 2003;133(5):1296-301. https://doi.org/10.1093/jn/133.5.1296 PMid:12730413
Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J Agric Food Chem. 2006;54(18):6578-87. https://doi.org/10.1021/jf0602370 PMid:16939312
Marczylo TH, Cooke D, Brown K, Steward WP, Gescher AJ. Pharmacokinetics and metabolism of the putative cancer chemopreventive agent cyanidin-3-glucoside in mice. Cancer Chemother Pharmacol. 2009;64(6):1261-8. https://doi.org/10.1007/s00280-009-0996-7 PMid:19363608
Matsumoto H, Ichiyanagi T, Iida H, Ito K, Tsuda T, Hirayama M, et al. Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats. J Agric Food Chem. 2006;54(2):578-82. https://doi.org/10.1021/ jf052411a PMid:16417324
Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016;7:375-93. https://doi.org/10.1146/ annurev-food-041715-033346 PMid:26772410
Felgines C, Krisa S, Mauray A, Besson C, Lamaison JL, Scalbert A, et al. Radiolabelled cyanidin 3-O-glucoside is poorly absorbed in the mouse. Br J Nutr. 2010;103(12):1738-45. https://doi.org/10.1017/s0007114510000061 PMid:20187984
Fang J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: Extensive presystemic metabolism reduces apparent bioavailability. J Agric Food Chem. 2014;62(18):3904-11. https://doi.org/10.1021/jf405356b PMid:24650097
Kamonpatana K, Giusti MM, Chitchumroonchokchai C, MorenoCruz M, Riedl KM, Kumar P, et al. Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chem. 2012;135(2):738-47. https://doi.org/10.1016/j. foodchem.2012.04.110 PMid:22868153
Mallery SR, Budendorf DE, Larsen MP, Pei P, Tong M, HolpuchAS, et al. Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev Res (Phila). 2011;4(8):1209- 21. https://doi.org/10.1158/1940-6207.capr-11-0040 PMid:21558412
Milbury PE, Cao G, Prior RL, Blumberg J. Bioavailablility of elderberry anthocyanins. Mech Ageing Dev. 2002;123(8):997- 1006. https://doi.org/10.1016/s0047-6374(01)00383-9 PMid:12044949
Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun. 2002;296(3):631-6. https://doi.org/10.1016/ s0006-291x(02)00927-0 PMid:12176028
Passamonti S, Terdoslavich M, Franca R, Vanzo A, Tramer F, Braidot E, et al. Bioavailability of flavonoids: A review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab. 2009;10(4):369-94. https://doi.org/10.2174/138920009788498950 PMid:19519345
Passamonti S, Vanzo A, Vrhovsek U, Terdoslavich M, Cocolo A, Decorti G, et al. Hepatic uptake of grape anthocyanins and the role of bilitranslocase. Food Res Int. 2005;38(8):953-60. https:// doi.org/10.1016/j.foodres.2005.02.015
Talavera S, Felgines C, Texier O, Besson C, Lamaison JL, Remesy C. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr. 2003;133(12):4178-82. https://doi.org/10.1093/jn/133.12.4178 PMid:14652368
Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014;7:54-66. https://doi.org/10.1016/j.jff.2013.05.010
Matuschek MC, Hendriks WH, McGhie TK, Reynolds GW. The jejunum is the main site of absorption for anthocyanins in mice. J Nutr Biochem. 2006;17(1):31-6. PMid:16098729
He J, Wallace TC, Keatley KE, Failla ML, Giusti MM. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat. J Agric Food Chem. 2009;57(8):3141-8. https://doi.org/10.1021/jf900567t PMid:19317488
Hollman PC. Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol. 2004;42(Suppl 1):74-83. https://doi.org/10.3109/13880200490893492
Arts IC, Sesink AL, Faassen-Peters M, Hollman PC. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr. 2004;91(6):841-7. https://doi.org/10.1079/ bjn20041123 PMid:15182387
Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(Suppl 1):230S-42. https://doi.org/10.1093/ajcn/81.1.230s PMid:15640486
Kay CD. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev. 2006;19(1):137-46. https://doi.org/10.1079/nrr2005116 PMid:19079881
Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T. Extended glucuronidation is another major path of cyanidin 3-O-beta-D-glucopyranoside metabolism in rats. J Agric Food Chem. 2005;53(18):7312-9. https://doi.org/10.1021/jf051002b PMid:16131148
Zimman A, Waterhouse AL. Enzymatic synthesis of [3’-O-methyl-(3)H]malvidin-3-glucoside from petunidin-3- glucoside. J Agric Food Chem. 2002;50(8):2429-31. https://doi.org/10.1021/jf0110755 PMid:11929308
Vanzo A, Terdoslavich M, Brandoni A, Torres AM, Vrhovsek U, Passamonti S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res. 2008;52(10):1106-16. https://doi.org/10.1002/mnfr.200700505 PMid:18655007
Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brosen K, Friedberg T. In vitro investigation of cytochrome P450- mediated metabolism of dietary flavonoids. Food Chem Toxicol. 2002;40(5):609-16. https://doi.org/10.1016/ s0278-6915(01)00125-9 PMid:11955666
Wu X, Cao G, Prior RL. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr. 2002;132(7):1865-71. https://doi.org/10.1093/jn/132.7.1865 PMid:12097661
Yeo M, Na YM, Kim DK, Kim YB, Wang HJ, Lee JA, et al. The loss of phenol sulfotransferase 1 in hepatocellular carcinogenesis. Proteomics. 2010;10(2):266-76. https://doi.org/10.1002/ pmic.200900721
Butler PR, Anderson RJ, Venton DL. Human platelet phenol sulfotransferase: Partial purification and detection of two forms of the enzyme. J Neurochem. 1983;41(3):630-9. https://doi.org/10.1111/j.1471-4159.1983.tb04788.x
Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison JL, Remesy C. Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem. 2005;53(20):7721-7. https://doi.org/10.1021/jf051092k PMid:16190623
Kalt W, Liu Y, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA. Anthocyanin metabolites are abundant and persistent in human urine. J Agric Food Chem. 2014;62(18):3926-34. https://doi.org/10.1021/jf500107j PMid:24432743
Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study. Am J Clin Nutr. 2013;97(5):995-1003. https://doi.org/10.3945/ajcn.112.049247 PMid:23604435
Kalt W, McDonald JE, Liu Y, Fillmore SA. Flavonoid metabolites in human urine during blueberry anthocyanin intake. J Agric Food Chem. 2017;65(8):1582-91. https://doi.org/10.1021/acs. jafc.6b05455 PMid:28150498
Sakakibara H, Ogawa T, Koyanagi A, Kobayashi S, Goda T, Kumazawa S, et al. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J Agric Food Chem. 2009;57(17):7681-6. https://doi.org/10.1021/jf901341b PMid:19663426
Merskey H. IASP Task Force on Taxonomy Australia Classification of Chronic Pain. Seattle: IASP Press; 1994.
Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16(11):1248-57. https://doi.org/10.1038/nm.2235 PMid:20948530
Anwar K. Pathophysiology of pain. Dis Mon. 2016;62(9):324-9. PMid:27329514
Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27-37. PMid:17426506
Stammers AT, Liu J, Kwon BK. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res. 2012;90(4):782-90. https://doi.org/10.1002/ jnr.22820 PMid:22420033
Siemionow K, Klimczak A, Brzezicki G, Siemionow M, McLain RF. The effects of inflammation on glial fibrillary acidic protein expression in satellite cells of the dorsal root ganglion. Spine (Phila Pa 1976). 2009;34(16):1631-7. https://doi.org/10.1097/brs.0b013e3181ab1f68 PMid:19770604
Dawes JM, Antunes-Martins A, Perkins JR, Paterson KJ, Sisignano M, Schmid R, et al. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-Binduced inflammation. PLoS One. 2014;9(4):e93338. https://doi.org/10.1371/journal.pone.0093338 PMid:24732968
Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST. MicroRNAs: Key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem. 2016;23(30):3528-46. https://doi.org/10.2174/09298673236661 60814001040 PMid:27528056
Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K, et al. Notch signaling enhances FcepsilonRImediated cytokine production by mast cells through direct and indirect mechanisms. J Immunol. 2015;194(9):4535-44. https:// doi.org/10.4049/jimmunol.1301850 PMid:25821223
Stepanova OI, Safronova NU, Furaeva KN, Lvova TU, Sokolov DI, Selkov SA. Effects of placental secretory factors on cytokine production by endothelial cells. Bull Exp Biol Med. 2013;154(3):375-8. https://doi.org/10.1007/s10517-013-1954-2 PMid:23484204
Qin Y, Hua M, Duan Y, Gao Y, Shao X, Wang H, et al. TNF-alpha expression in Schwann cells is induced by LPS and NF-kappaBdependent pathways. Neurochem Res. 2012;37(4):722-31. https://doi.org/10.1007/s11064-011-0664-2 PMid:22219126
Hasegawa S, Kohro Y, Shiratori M, Ishii S, Shimizu T, Tsuda M, et al. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain. PLoS One. 2010;5(5):e10467. https://doi.org/10.1371/journal.pone.0010467
Watkins LR, Wiertelak EP, Goehler LE, Smith KP, Martin D, Maier SF. Characterization of cytokine-induced hyperalgesia. Brain Res. 1994;654(1):15-26. https://doi.org/10.1016/0006-8993(94)91566-0 PMid:7982088
Wang KC, Wang SJ, Fan LW, Cai Z, Rhodes PG, Tien LT. Interleukin-1 receptor antagonist ameliorates neonatal lipopolysaccharide-induced long-lasting hyperalgesia in the adult rats. Toxicology. 2011;279(1-3):123-9. https://doi.org/10.1016/j.tox.2010.10.002 PMid:20937348
Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience. 2001;103(2):529-39. https:// doi.org/10.1016/s0306-4522(00)00574-1 PMid:11246166
Katsuura G, Gottschall PE, Dahl RR, Arimura A. Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: Modulatory effect of neuropeptides. Endocrinology. 1989;124(6):3125-7. https://doi.org/10.1210/endo-124-6-3125 PMid:2785913
Hart RP, Shadiack AM, Jonakait GM. Substance P gene expression is regulated by interleukin-1 in cultured sympathetic ganglia. J Neurosci Res. 1991;29(3):282-91. https://doi.org/10.1002/jnr.490290303
Leibinger M, Muller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D. Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis. 2013;4:e609. https://doi.org/10.1038/cddis.2013.126 PMid:23618907
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254-66. https://doi.org/10.7150/ijbs.4679 PMid:23136554
Millan MJ. The induction of pain: An integrative review. Prog Neurobiol. 1999;57(1):1-164. PMid:9987804
DeLeo JA, Colburn RW, Nichols M, Malhotra A. Interleukin6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interferon Cytokine Res. 1996;16(9):695-700. https://doi.org/10.1089/ jir.1996.16.695 PMid:8887053
Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain. 1998;78(2):115-21. https://doi.org/10.1016/ s0304-3959(98)00121-3 PMid:9839821
Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141. https://doi.org/10.1186/ s12974-016-0607-6 PMid:27267059
Dong Y, Mao-Ying QL, Chen JW, Yang CJ, Wang YQ, Tan ZM. Involvement of EphB1 receptor/ephrinB1 ligand in bone cancer pain. Neurosci Lett. 2011;496(3):163-7. https://doi.org/10.1016/j. neulet.2011.04.008 PMid:21514363
Fang D, Kong LY, Cai J, Li S, Liu XD, Han JS, et al. Interleukin6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: Roles in the development of bone cancer pain in a rat model. Pain. 2015;156(6):1124-44. https://doi.org/10.1097/j.pain.0000000000000158 PMid:25775359
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 1994;172(1-2):151- 4. https://doi.org/10.1016/0304-3940(94)90684-x PMid:8084523
Sinclair SM, Shamji MF, Chen J, Jing L, Richardson WJ, Brown CR, et al. Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist. Spine (Phila Pa 1976). 2011;36(15):1190-6. https://doi.org/10.1097/brs.0b013e3181ebdb43 PMid:21217452
Choi JI, Svensson CI, Koehrn FJ, Bhuskute A, Sorkin LS. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain. 2010;149(2):243-53. https:// doi.org/10.1016/j.pain.2010.02.008 PMid:20202754
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 2009;29(6):313-26. https://doi.org/10.1089/ jir.2008.0027 PMid:19441883
Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin-1[beta]-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6827):471-5. https://doi.org/10.1038/35068566 PMid:11260714
Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265(28):16737-40. PMid:2120205
Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem. 2000;275(42):32783-92. https://doi.org/10.1074/jbc. m003505200 PMid:10869354
Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem. 2007;282(16):11613-7. https://doi.org/10.1074/jbc. r600038200 PMid:17329241
Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002;35(4):721-31. https://doi.org/10.1016/ s0896-6273(02)00802-4 PMid:12194871
Ji RR, Gereau RW, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60(1):135-48. https://doi.org/10.1016/j.brainresrev.2008.12.011 PMid:19150373
Ji RR, Suter MR. p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain. 2007;3:33. https://doi.org/10.1186/1744-8069-3-33 PMid:17974036
Svensson CI, Marsala M, Westerlund A, Calcutt NA, CampanaWM, Freshwater JD, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003;86(6):1534-44. https://doi.org/10.1046/j.1471-4159.2003.01969.x PMid:12950462
Schafers M, Svensson CI, Sommer C, Sorkin LS. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci. 2003;23(7):2517-21. https://doi.org/10.1523/jneurosci.23-07-02517.2003 PMid:12684435
Carniglia L, Ramirez D, Durand D, Saba J, Turati J, Caruso C, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017;2017:5048616. https://doi.org/10.1155/2017/5048616
Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017-21. https://doi.org/10.1038/nature04223 PMid:16355225
Burnstock G. P2X receptors in sensory neurones. Br J Anaesth. 2000;84(4):476-88. PMid:10823099
Burnstock G. Purinergic mechanosensory transduction and visceral pain. Mol Pain. 2009;5:69. https://doi.org/10.1186/1744-8069-5-69 PMid:19948030
Burnstock G. Purinergic Mechanisms and Pain. Adv Pharmacol. 2016;75:91-137. PMid:26920010
Burnstock G, Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433-40. https://doi.org/10.1016/0306-3623(85)90001-1 PMid:2996968
Abbracchio MP, Burnstock G. Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445- 75. https://doi.org/10.1016/0163-7258(94)00048-4 PMid:7724657
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal. 2008;4(3):197-212. https://doi.org/10.1007/s11302-007-9081-z PMid:18368521
Christofi FL. Purinergic receptors and gastrointestinal secretomotor function. Purinergic Signal. 2008;4(3):213-36. https://doi.org/10.1007/s11302-008-9104-4 PMid:18604596
Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans JP. Evidence for a role of neuroepithelial bodies as complex airway sensors: Comparison with smooth muscle-associated airway receptors. J Appl Physiol (1985). 2006;101(3):960-70. https:// doi.org/10.1152/japplphysiol.00267.2006 PMid:16741263
Brouns I, De Proost I, Pintelon I, Timmermans JP, Adriaensen D. Sensory receptors in the airways: Neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci. 2006;126- 127:307-19. https://doi.org/10.1016/j.autneu.2006.02.006 PMid:16600695
Cho T, Chaban VV. Expression of P2X3 and TRPV1 receptors in primary sensory neurons from estrogen receptors-alpha and estrogen receptor-beta knockout mice. Neuroreport. 2012;23(9):530-4. https://doi.org/10.1097/ wnr.0b013e328353fabc PMid:22581043
Saloman JL, Chung MK, Ro JY. P2X(3) and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience. 2013;232:226-38. https://doi.org/10.1016/j. neuroscience.2012.11.015 PMid:23201260
Burnstock G, Knight GE, Greig AV. Purinergic signaling in healthy and diseased skin. J Invest Dermatol. 2012;132(3 Pt 1):526-46. https://doi.org/10.1038/jid.2011.344 PMid:22158558
Hamilton SG, McMahon SB, Lewin GR. Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J Physiol. 2001;534(Pt 2):437-45. https://doi.org/10.1111/j.1469-7793.2001.00437.x PMid:11454962
Xu GY, Huang LY. Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci. 2002;22(1):93-102. https://doi.org/10.1523/ jneurosci.22-01-00093.2002 PMid:11756492
Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, et al. ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil. 2001;13(4):365-9. https://doi.org/10.1046/j.1365-2982.2001.00276.x PMid:11576396
Somers GR, Hammet FM, Trute L, Southey MC, Venter DJ. Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest. 1998;78(11):1375-83. PMid:9840612
Wan P, Liu X, Xiong Y, Ren Y, Chen J, Lu N, et al. Extracellular ATP mediates inflammatory responses in colitis via P2 x 7 receptor signaling. Sci Rep. 2016;6:19108. https://doi.org/10.1038/srep19108
Wang Y, Li G, Liang S, Zhang A, Xu C, Gao Y, et al. Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci. 2008;139(1-2):30-7. https://doi.org/10.1016/j.autneu.2019.102587 PMid:18276198
Thompson GW, Horackova M, Armour JA. Role of P1 purinergic receptors in myocardial ischemia sensory transduction. Cardiovasc Res. 2002;53(4):888-901. https://doi.org/10.1016/ s0008-6363(01)00542-9
Granado M, Amor S, Montoya JJ, Monge L, Fernandez N, Garcia-Villalon AL. Altered expression of P2Y2 and P2X7 purinergic receptors in the isolated rat heart mediates ischemiareperfusion injury. Vascul Pharmacol. 2015;73:96-103. https:// doi.org/10.1016/j.vph.2015.06.003 PMid:26070527
Watanabe T, Tsuboi Y, Sessle BJ, Iwata K, Hu JW. P2X and NMDA receptor involvement in temporomandibular joint-evoked reflex activity in rat jaw muscles. Brain Res. 2010;1346:83-91. https://doi.org/10.1016/j.brainres.2010.05.055
Dowd E, McQueen DS, Chessell IP, Humphrey PP. P2X receptormediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol. 1998;125(2):341-6. https://doi.org/10.1038/sj.bjp.0702080 PMid:9786507
Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, et al. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum. 2009;60(10):3061-71. https://doi.org/10.1002/art.24817 PMid:19790055
Martins DF, Mazzardo-Martins L, Cidral-Filho FJ, Stramosk J, Santos AR. Ankle joint mobilization affects postoperative pain through peripheral and central adenosine A1 receptors. Phys Ther. 2013;93(3):401-12. https://doi.org/10.2522/ptj.20120226 PMid:23086409
Inoue K, Tsuda M, Koizumi S. ATP receptors in pain sensation: Involvement of spinal microglia and P2X(4) receptors. Purinergic Signal. 2005;1(2):95-100. https://doi.org/10.1007/ s11302-005-6210-4 PMid:18404495
Trang T, Beggs S, Salter MW. ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol. 2012;234(2):354-61. https://doi.org/10.1016/j.expneurol.2011.11.012 PMid:22116040
Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008;28(44):11263-8. https:// doi.org/10.1523/jneurosci.2308-08.2008 PMid:18971468
Trang T, Beggs S, Wan X, Salter MW. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci. 2009;29(11):3518-28. https://doi.org/10.1523/jneurosci.5714-08.2009 PMid:19295157
Gong QJ, Li YY, Xin WJ, Zang Y, Ren WJ, Wei XH, et al. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: The roles of P2X4 receptors and p38 MAPK in microglia. Glia. 2009;57(6):583-91. https://doi.org/10.1002/glia.20786 PMid:18837052
Hughes JP, Hatcher JP, Chessell IP. The role of P2X(7) in pain and inflammation. Purinergic Signal. 2007;3(1-2):163-9. PMid:18404430
Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, et al. The P2X7 receptor: A key player in IL-1 processing and release. J Immunol. 2006;176(7):3877-83. https://doi.org/10.4049/jimmunol.176.7.3877 PMid:16547218
Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain. 2005;114(3):386-96. https://doi.org/10.1016/j.pain.2005.01.002 PMid:15777864
Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci. 2004;24(1):1-7. https:// doi.org/10.1523/jneurosci.3792-03.2004 PMid:14715932
Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K. P2X7- dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia. 2014;62(4):592- 607. https://doi.org/10.1002/glia.22628 PMid:24470356
Li L, Wang L, Wu Z, Yao L, Wu Y, Huang L, et al. Anthocyaninrich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep. 2014;4:6234. https://doi.org/10.1038/srep06234 PMid:25167935
Jeong JW, Lee WS, Shin SC, Kim GY, Choi BT, Choi YH. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-kappaB and Akt/MAPKs signaling pathways. Int J Mol Sci. 2013;14(1):1502-15. https://doi.org/10.3390/ijms14011502 PMid:23344054
Karlsen A, Retterstøl L, Laake P, Paur I, Kjølsrud-Bøhn S, Sandvik L, et al. Anthocyanins inhibit nuclear factor-κB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137(8):1951-4. https://doi.org/10.1093/jn/137.8.1951 PMid:17634269
Kim SM, Chung MJ, Ha TJ, Choi HN, Jang SJ, Kim SO, et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1–JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci. 2012;90(21-22):874-82. https://doi.org/10.1016/j.lfs.2012.04.025 PMid:22575822
Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB. Delphinidin and cyanidin inhibit PDGFAB-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol. 2006;149(3):283-90. https:// doi.org/10.1038/sj.bjp.0706843 PMid:16921400
Seeram NP, Momin RA, Nair MG, Bourquin LD. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine. 2001;8(5):362-9. https://doi.org/10.1078/0944-7113-00053 PMid:11695879
Mulabagal V, Lang GA, DeWitt DL, Dalavoy SS, Nair MG. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J Agric Food Chem. 2009;57(4):1239-46. https://doi.org/10.1021/ jf8032039 PMid:19199585
Tsoyi K, Park HB, Kim YM, Chung JI, Shin SC, Lee WS, et al. Anthocyanins from black soybean seed coats inhibit UVBinduced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factorkappaB and phosphatidylinositol 3-kinase/Akt pathway. J Agric Food Chem. 2008;56(19):8969-74. https://doi.org/10.1021/ jf801345c PMid:18778065
Hwang YP, Choi JH, Yun HJ, Han EH, Kim HG, Kim JY, et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2- mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol. 2011;49(1):93-9. https://doi.org/10.1016/j.fct.2010.10.002 PMid:20934476
Kim HJ, Xu L, Chang KC, Shin SC, Chung JI, Kang D, et al. Anti-inflammatory effects of anthocyanins from black soybean seed coat on the keratinocytes and ischemia-reperfusion injury in rat skin flaps. Microsurgery. 2012;32(7):563-70. https://doi.org/10.1002/micr.22019 PMid:22821773
Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781-8. https://doi.org/10.1038/onc.2009.421 PMid:19946329
Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158. https:// doi.org/10.1155/2010/215158 PMid:20339581
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15(1):106. https://doi.org/10.1186/s12935-015-0260-7 PMid:26549987
Ma W, Chabot JG, Vercauteren F, Quirion R. Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats. Neurobiol Aging. 2010;31(7):1227-37. https:// doi.org/10.1016/j.neurobiolaging.2008.08.002 PMid:18786748
Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11(14):1737-55. https://doi.org/10.2174/1381612053764896 PMid:15892672
Sinatra R. Role of COX-2 inhibitors in the evolution of acute pain management. J Pain Symptom Manage. 2002;24(1):S18-27. https://doi.org/10.1016/s0885-3924(02)00410-4 PMid:12204484
Han GL, Li CM, Mazza G, Yang XG. Effect of anthocyanin rich fruit extract on PGE2 produced by endothelial cells. Wei Sheng Yan Jiu. 2005;34(5):581-4. PMid:16329602
He YH, Zhou J, Wang YS, Xiao C, Tong Y, Tang JC, et al. Anti-inflammatory and anti-oxidative effects of cherries on Freund’s adjuvant-induced arthritis in rats. Scand J Rheumatol. 2006;35(5):356-8. https://doi.org/10.1080/03009740600704155 PMid:17062434
Kim HJ, Tsoy I, Park JM, Chung JI, Shin SC, Chang KC. Anthocyanins from soybean seed coat inhibit the expression of TNF-alpha-induced genes associated with ischemia/reperfusion in endothelial cell by NF-kappaB-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett. 2006;580(5):1391-7. https://doi.org/10.1016/j.febslet.2006.01.062 PMid:16457818
Luo H, Lv XD, Wang GE, Li YF, Kurihara H, He RR. Antiinflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int J Food Sci Nutr. 2014;65(5):594-601. https://doi.org/10 .3109/09637486.2014.886184 PMid:24548119
Amin HP, Czank C, Raheem S, Zhang Q, Botting NP, Cassidy A, et al. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol Nutr Food Res. 2015;59(6):1095-106. https://doi.org/10.1002/mnfr.201400803
Farrell N, Norris G, Lee SG, Chun OK, Blesso CN. Anthocyaninrich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food Funct. 2015;6(4):1278-87. https://doi.org/10.1039/c4fo01036a PMid:25758596
Zhang X, Zhu Y, Song F, Yao Y, Ya F, Li D, et al. Effects of purified anthocyanin supplementation on platelet chemokines in hypocholesterolemic individuals: A randomized controlled trial. Nutr Metab. 2016;13(1):86. https://doi.org/10.1186/ s12986-016-0146-2 PMid:27933092
Sogo T, Terahara N, Hisanaga A, Kumamoto T, Yamashiro T, Wu S, et al. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Biofactors. 2015;41(1):58-65. https://doi.org/10.1002/biof.1201 PMid:25728636
Winter AN, Ross EK, Wilkins HM, Stankiewicz TR, Wallace T, Miller K, et al. An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci. 2018;21:414-26. https://doi.org/10.1080/10284 15x.2017.1297023 PMid:28276271
Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, et al. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation. 2016;13(1):286. https://doi.org/10.1186/s12974-016-0752-y PMid:27821173
Kuehl KS, Perrier ET, Elliot DL, Chesnutt JC. Efficacy of tart cherry juice in reducing muscle pain during running: A randomized controlled trial. J Int Soc Sports Nutr. 2010;7:17. https://doi.org/10.1186/1550-2783-7-17 PMid:20459662
Schumacher HR, Pullman-Mooar S, Gupta SR, Dinnella JE, Kim R, McHugh MP. Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (OA) of the knee. Osteoarthritis Cartilage. 2013;21(8):1035-41. https://doi.org/10.1016/j.joca.2013.05.009 PMid:23727631
Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res. 2004;153(1):181-8. https://doi.org/10.1016/j.bbr.2003.11.011 PMid:15219719
Sanchez A, Calpena AC, Clares B. Evaluating the oxidative stress in inflammation: Role of melatonin. Int J Mol Sci. 2015;16(8):16981-7004. https://doi.org/10.3390/ijms160816981 PMid:26225957
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13. PMid:19061483
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7. https://doi.org/10.1186/s13024-017-0150-7
Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015;2015:18. https://doi.org/10.1155/2015/610813
Urrutia PJ, Mena NP, Nunez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38. https://doi.org/10.3389/ fphar.2014.00038 PMid:24653700
van Noort JM, Bsibsi M. Toll-like receptors in the CNS: Implications for neurodegeneration and repair. Prog Brain Res. 2009;175:139-48. https://doi.org/10.1016/ s0079-6123(09)17509-x
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103-15. PMid:21187859
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol. 2014;2014:674987. https://doi.org/10.1155/2014/674987 PMid:24883061
Ungard RG, Seidlitz EP, Singh G. Oxidative stress and cancer pain. Can J Physiol Pharmacol. 2013;91(1):31-7. https://doi.org/10.1139/cjpp-2012-0298 PMid:23368277
Areti A, Yerra VG, Naidu V, Kumar A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289-95. https://doi.org/10.1016/j. redox.2014.01.006 PMid:24494204
Yudoh K, Nguyen VT, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: Oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther. 2005;7(2):R380-91. https://doi.org/10.1186/ar1499 PMid:15743486
Ziskoven C, Jager M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: From cartilage destruction to clinical presentation? Orthop Rev (Pavia). 2010;2(2):e23. https://doi.org/10.4081/or.2010.e23 PMid:21808712
Lee KY, Chung K, Chung JM. Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol. 2010;103(1):382-91. https://doi.org/10.1152/ jn.90906.2008 PMid:19906875
Lee DZ, Chung JM, Chung K, Kang MG. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior. Pain. 2012;153(9):1905-15. https://doi.org/10.1016/j. pain.2012.06.001 PMid:22770842
Nishio N, Taniguchi W, Sugimura YK, Takiguchi N, Yamanaka M, Kiyoyuki Y, et al. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience. 2013;247:201-12. https://doi.org/10.1016/j. neuroscience.2013.05.023
Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. Adv Exp Med Biol. 2011;704:615-36. PMid:21290319
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, et al. TRPs in pain sensation. Front Physiol. 2017;8:392. https://doi.org/10.3389/fphys.2017.00392 PMid:28649203
Takahashi A, Mikami M, Yang J. Hydrogen peroxide increases GABAergic mIPSC through presynaptic release of calcium from IP3 receptor-sensitive stores in spinal cord substantia gelatinosa neurons. Eur J Neurosci. 2007;25(3):705-16. https:// doi.org/10.1111/j.1460-9568.2007.05323.x PMid:17328771
Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010;276(2):85-94. https://doi.org/10.1016/j.tox.2010.07.009 PMid:20643181
Kolberg C, Horst A, Moraes MS, Duarte FC, Riffel AP, Scheid T, et al. Peripheral oxidative stress blood markers in patients with chronic back or neck pain treated with high-velocity, low-amplitude manipulation. J Manipulative Physiol Ther. 2015;38(2):119-29. https://doi.org/10.1016/j.jmpt.2014.11.003 PMid:25487299
Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2009;29(1):159-68. https://doi.org/10.1523/ jneurosci.3792-08.2009 PMid:19129394
Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem. 2003;51(3):628-33. https://doi.org/10.1021/jf025551i PMid:12537433
Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933-56. https://doi.org/10.1016/0891-5849(95)02227-9 PMid:8743980
Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997;45(2):304-9. https:// doi.org/10.1021/jf960421t
Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konishi T. Superoxide radical and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radic Res. 2006;40(9):993-1002. https://doi.org/10.1080/10715760600815322 PMid:17015281
Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol. 1996;52(7):1033-9. https://doi.org/10.1016/0006-2952(96)00421-2 PMid:8831722
Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102(3):777-83. https://doi.org/10.1016/j.foodchem.2006.06.021
Moriyama H, Morita Y, Ukeda H, Sawamura M, Terahara N. Superoxide anion-scavenging activity of anthocyanin pigments. Nippon Shokuhin Kagaku Kogaku Kaishi. 2003;50(11):499-505. https://doi.org/10.3136/nskkk.50.499
De Rosso VV, Moran Vieyra FE, Mercadante AZ, Borsarelli CD. Singlet oxygen quenching by anthocyanin’s flavylium cations. Free Radic Res. 2008;42(10):885-91. https://doi.org/10.1080/10715760802506349 PMid:18985487
Ichikawa H, Ichiyanagi T, Xu B, Yoshii Y, Nakajima M, Konishi T. Antioxidant activity of anthocyanin extract from purple black rice. J Med Food. 2001;4(4):211-8. https://doi.org/10.1089/10966200152744481 PMid:12639403
Bi X, Zhang J, Chen C, Zhang D, Li P, Ma F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chem. 2014;152:205-9. https:// doi.org/10.1016/j.foodchem.2013.11.088 PMid:24444927
Devi PS, Kumar MS, Das SM. DNA damage protecting activity and free radical scavenging activity of anthocyanins from red Sorghum (Sorghum bicolor) Bran. Biotechnol Res Int. 2012;2012:258787. https://doi.org/10.1155/2012/258787
Lim TG, Jung SK, Kim JE, Kim Y, Lee HJ, Jang TS, et al. NADPH oxidase is a novel target of delphinidin for the inhibition of UVBinduced MMP-1 expression in human dermal fibroblasts. Exp Dermatol. 2013;22(6):428-30. https://doi.org/10.1111/exd.12157 PMid:23711068
Xie X, Zhao R, Shen GX. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells. Int J Mol Sci. 2012;13(12):15867-80. https://doi.org/10.3390/ijms131215867 PMid:23443099
Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem. 2002;50(26):7731-7. https://doi.org/10.1021/jf020690l PMid:12475297
Kay CD, Holub BJ. The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr. 2007;88(4):389-98. https:// doi.org/10.1079/bjn2002665 PMid:12323088
Tsuda T, Horio F, Osawa T. Dietary cyanidin 3-O-β-d-glucoside increases ex vivo oxidation resistance of serum in rats. Lipids. 1998;33(6):583-8. https://doi.org/10.1007/s11745-998-0243-5 PMid:9655373
Park KH, Kim JR, Lee JS, Lee H, Cho KH. Ethanol and water extract of purple sweet potato exhibits anti-atherosclerotic activity and inhibits protein glycation. J Med Food. 2010;13(1):91-8. https://doi.org/10.1089/jmf.2009.1077 PMid:20136441
Steed LE, Truong VD. Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purees. J Food Sci. 2008;73(5):S215-21. https://doi.org/10.1111/j.1750-3841.2008.00774.x PMid:18577013
Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5(3):123-7. https://doi.org/10.15171/bi.2015.20 PMid:26457249
Kelsey N, Hulick W, Winter A, Ross E, Linseman D. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutr Neurosci. 2011;14(6):249- 59. https://doi.org/10.1179/1476830511y.0000000020 PMid:22053756
Tarozzi A, Morroni F, Hrelia S, Angeloni C, Marchesi A, CantelliForti G, et al. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett. 2007;424(1):36-40. https://doi.org/10.1016/j.neulet.2007.07.017 PMid:17709193
Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. Fast access of some grape pigments to the brain. J Agric Food Chem. 2005;53(18):7029-34. https://doi.org/10.1021/jf050565k PMid:16131107
Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, et al. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem. 2008;56(3):705-12. https://doi.org/10.1021/jf071998l PMid:18211026
Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8(2):111-20. https://doi.org/10.1080/10284150500078117 PMid:16053243
Carvalho FB, Gutierres JM, Bohnert C, Zago AM, Abdalla FH, Vieira JM, et al. Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination. J Nutr Biochem. 2015;26(4):378- 90. https://doi.org/10.1016/j.jnutbio.2014.11.006
Stettner M, Wolffram K, Mausberg AK, Albrecht P, Derksen A, Methner A, et al. Promoting myelination in an in vitro mouse model of the peripheral nerve system: The effect of wine ingredients. PLOS One. 2013;8(6):e66079. https://doi.org/10.1371/journal.pone.0066079 PMid:23762469
Moulin DE. Pain in central and peripheral demyelinating disorders. Neurol Clin. 1998;16(4):889-98. PMid:9767068
Mirshekar M, Roghani M, Khalili M, Baluchnejadmojarad T, Moazzen SA. Chronic oral pelargonidin alleviates streptozotocininduced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran Biomed J. 2010;14(1-2):33-9. PMid:20683496
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 I Putu Eka Widyadharma, Andreas Soejitno, Made Jawi, Thomas Eko Purwata, Dewa Ngurah Suprapta, A. A. Raka Sudewi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0